Cloud-Resolving Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observations with an Ensemble Kalman Filter

2009 ◽  
Vol 137 (7) ◽  
pp. 2105-2125 ◽  
Author(s):  
Fuqing Zhang ◽  
Yonghui Weng ◽  
Jason A. Sippel ◽  
Zhiyong Meng ◽  
Craig H. Bishop

This study explores the assimilation of Doppler radar radial velocity observations for cloud-resolving hurricane analysis, initialization, and prediction with an ensemble Kalman filter (EnKF). The case studied is Hurricane Humberto (2007), the first landfalling hurricane in the United States since the end of the 2005 hurricane season and the most rapidly intensifying near-landfall storm in U.S. history. The storm caused extensive damage along the southeast Texas coast but was poorly predicted by operational models and forecasters. It is found that the EnKF analysis, after assimilating radial velocity observations from three Weather Surveillance Radars-1988 Doppler (WSR-88Ds) along the Gulf coast, closely represents the best-track position and intensity of Humberto. Deterministic forecasts initialized from the EnKF analysis, despite displaying considerable variability with different lead times, are also capable of predicting the rapid formation and intensification of the hurricane. These forecasts are also superior to simulations without radar data assimilation or with a three-dimensional variational scheme assimilating the same radar observations. Moreover, nearly all members from the ensemble forecasts initialized with EnKF analysis perturbations predict rapid formation and intensification of the storm. However, the large ensemble spread of peak intensity, which ranges from a tropical storm to a category 2 hurricane, echoes limited predictability in deterministic forecasts of the storm and the potential of using ensembles for probabilistic forecasts of hurricanes.

2005 ◽  
Vol 133 (7) ◽  
pp. 1789-1807 ◽  
Author(s):  
Mingjing Tong ◽  
Ming Xue

Abstract A Doppler radar data assimilation system is developed based on an ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm. As a first implementation, it is assumed that the forward models are perfect and that the radar data are sampled at the analysis grid points. A general purpose nonhydrostatic compressible model is used with the inclusion of complex multiclass ice microphysics. New aspects of this study compared to previous work include the demonstration of the ability of the EnKF method to retrieve multiple microphysical species associated with a multiclass ice microphysics scheme, and to accurately retrieve the wind and thermodynamic variables. Also new are the inclusion of reflectivity observations and the determination of the relative role of the radial velocity and reflectivity data as well as their spatial coverage in recovering the full-flow and cloud fields. In general, the system is able to reestablish the model storm extremely well after a number of assimilation cycles, and best results are obtained when both radial velocity and reflectivity data, including reflectivity information outside of the precipitation regions, are used. Significant positive impact of the reflectivity assimilation is found even though the observation operator involved is nonlinear. The results also show that a compressible model that contains acoustic modes, hence the associated error growth, performs at least as well as an anelastic model used in previous EnKF studies at the cloud scale. Flow-dependent and dynamically consistent background error covariances estimated from the forecast ensemble play a critical role in successful assimilation and retrieval. When the assimilation cycles start from random initial perturbations, better results are obtained when the updating of the fields that are not directly related to radar reflectivity is withheld during the first few cycles. In fact, during the first few cycles, the updating of the variables indirectly related to reflectivity hurts the analysis. This is so because the estimated background covariances are unreliable at this stage of the data assimilation process, which is related to the way the forecast ensemble is initialized. Forecasts of supercell storms starting from the best-assimilated initial conditions are shown to remain very good for at least 2 h.


2003 ◽  
Vol 131 (8) ◽  
pp. 1663-1677 ◽  
Author(s):  
Chris Snyder ◽  
Fuqing Zhang

Abstract Assimilation of Doppler radar data into cloud models is an important obstacle to routine numerical weather prediction for convective-scale motions; the difficulty lies in initializing fields of wind, temperature, moisture, and condensate given only observations of radial velocity and reflectivity from the radar. This paper investigates the potential of the ensemble Kalman filter (EnKF), which estimates the covariances between observed variables and the state through an ensemble of forecasts, to assimilate radar observations at convective scales. In the basic experiment, simulated observations are extracted from a reference simulation of a splitting supercell and assimilated using the EnKF and the same numerical model that produced the reference simulation. The EnKF produces accurate analyses, including the unobserved variables, after roughly 30 min (or six scans) of radial velocity observations. Additional experiments, in which forecasts are made from the ensemble-mean analysis, reveal that forecast errors grow significantly in this simple system, so that the ability of the EnKF to track the reference solution is not simply because of stable system dynamics. It is also found that the covariances between radial velocity and temperature, moisture, and condensate are important to the quality of the analyses, as is the initialization chosen for the ensemble members prior to assimilating the first observations. These results are promising, especially given the ease of implementing the EnKF. A number of important issues remain, however, including the initialization of the ensemble prior to the first observation, the treatment of uncertainty in the environmental sounding, the role of error in the forecast model (particularly the microphysical parameterizations), and the treatment of lateral boundary conditions.


2010 ◽  
Vol 138 (4) ◽  
pp. 1273-1292 ◽  
Author(s):  
Altuğ Aksoy ◽  
David C. Dowell ◽  
Chris Snyder

Abstract The quality of convective-scale ensemble forecasts, initialized from analysis ensembles obtained through the assimilation of radar observations using an ensemble Kalman filter (EnKF), is investigated for cases whose behaviors span supercellular, linear, and multicellular organization. This work is the companion to Part I, which focused on the quality of analyses during the 60-min analysis period. Here, the focus is on 30-min ensemble forecasts initialized at the end of that period. As in Part I, the Weather Research and Forecasting (WRF) model is employed as a simplified cloud model at 2-km horizontal grid spacing. Various observation-space and state-space verification metrics, computed both for ensemble means and individual ensemble members, are employed to assess the quality of ensemble forecasts comparatively across cases. While the cases exhibit noticeable differences in predictability, the forecast skill in each case, as measured by various metrics, decays on a time scale of tens of minutes. The ensemble spread also increases rapidly but significant outlier members or clustering among members are not encountered. Forecast quality is seen to be influenced to varying degrees by the respective initial soundings. While radar data assimilation is able to partially mitigate some of the negative effects in some situations, the supercell case, in particular, remains difficult to predict even after 60 min of data assimilation.


2014 ◽  
Vol 142 (6) ◽  
pp. 2118-2138 ◽  
Author(s):  
Weiguang Chang ◽  
Kao-Shen Chung ◽  
Luc Fillion ◽  
Seung-Jong Baek

Abstract An 80-member high-resolution ensemble Kalman filter (HREnKF) is implemented for assimilating radar observations with the Canadian Meteorological Center’s (CMC’s) Global Environmental Multiscale Limited-Area Model (GEM-LAM). This system covers the Montréal, Canada, region and assimilates radar data from the McGill Radar Observatory with 4-km data thinning. The GEM-LAM operates in fully nonhydrostatic mode with 58 hybrid vertical levels and 1-km horizontal grid spacing. As a first step toward full radar data assimilation, only radial velocities are directly assimilated in this study. The HREnKF is applied on three 2011 summer cases having different precipitation structures: squall-line structure, isolated small-scale structures, and widespread stratiform precipitation. The short-term (<2 h) accuracy of the HREnKF analyses and forecasts is examined. In HREnKF, the ensemble spread is sufficient to cover the estimated error from innovations and lead to filter convergence. It results in part from a realistic initiation of HREnKF data assimilation cycle by using a Canadian regional EnKF system (itself coupled to a global EnKF) working at meso- and synoptic scales. The filter convergence is confirmed by the HREnKF background fields gradually approaching to radar observations as the assimilation cycling proceeds. At each analysis step, it is clearly shown that unobserved variables are significantly modified through HREnKF cross correlation of errors from the ensemble. Radar reflectivity observations are used to verify the improvements in analyses and short-term forecasts achievable by assimilating only radial velocities. Further developments of the analysis system are discussed.


2019 ◽  
Vol 147 (7) ◽  
pp. 2511-2533 ◽  
Author(s):  
Bryan Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan Snook ◽  
Guifu Zhang

Abstract Real polarimetric radar observations are directly assimilated for the first time using the ensemble Kalman filter (EnKF) for a supercell case from 20 May 2013 in Oklahoma. A double-moment microphysics scheme and advanced polarimetric radar observation operators are used together to estimate the model states. Lookup tables for the observation operators are developed based on T-matrix scattering amplitudes for all hydrometeor categories, which improve upon previous curved-fitted approximations of T-matrix scattering amplitudes or the Rayleigh approximation. Two experiments are conducted: one assimilates reflectivity (Z) and radial velocity (Vr) (EXPZ), and one assimilates in addition differential reflectivity (ZDR) below the observed melting level at ~2-km height (EXPZZDR). In the EnKF analyses, EXPZZDR exhibits a ZDR arc that better matches observations than EXPZ. EXPZZDR also has higher ZDR above 2 km, consistent with the observed ZDR column. Additionally, EXPZZDR has an improved estimate of the model microphysical states. Specifically, the rain mean mass diameter (Dnr) in EXPZZDR is higher in the ZDR arc region and the total rain number concentration (Ntr) is lower downshear in the forward flank than EXPZ when compared to values retrieved from the polarimetric observations. Finally, a negative gradient of hail mean mass diameter (Dnh) is found in the right-forward flank of the EXPZZDR analysis, which supports previous findings indicating that size sorting of hail, as opposed to rain, has a more significant impact on low-level polarimetric signatures. This paper represents a proof-of-concept study demonstrating the value of assimilating polarimetric radar data in improving the analysis of features and states related to microphysics in supercell storms.


2014 ◽  
Vol 53 (10) ◽  
pp. 2325-2343 ◽  
Author(s):  
Zhan Li ◽  
Zhaoxia Pu ◽  
Juanzhen Sun ◽  
Wen-Chau Lee

AbstractThe Weather Research and Forecasting Model and its four-dimensional variational data assimilation (4DVAR) system are employed to examine the impact of airborne Doppler radar observations on predicting the genesis of Typhoon Nuri (2008). Electra Doppler Radar (ELDORA) airborne radar data, collected during the Office of Naval Research–sponsored Tropical Cyclone Structure 2008 field experiment, are used for data assimilation experiments. Two assimilation methods are evaluated and compared, namely, the direct assimilation of radar-measured radial velocity and the assimilation of three-dimensional wind analysis derived from the radar radial velocity. Results show that direct assimilation of radar radial velocity leads to better intensity forecasts, as this process enhances the development of convective systems and improves the inner-core structure of Nuri, whereas assimilation of the radar-retrieved wind analysis is more beneficial for tracking forecasts, as it results in improved environmental flows. The assimilation of both the radar-retrieved wind and the radial velocity can lead to better forecasts in both intensity and tracking, if the radial velocity observations are assimilated first and the retrieved winds are then assimilated in the same data assimilation window. In addition, experiments with and without radar data assimilation led to developing and nondeveloping disturbances in numerical simulations of Nuri’s genesis. The improved initial conditions and forecasts from the data assimilation imply that the enhanced midlevel vortex and moisture conditions are favorable for the development of deep convection in the center of the pouch and eventually contribute to Nuri’s genesis. The improved simulations of the convection and associated environmental conditions produce enhanced upper-level warming in the core region and lead to the drop in sea level pressure.


2013 ◽  
Vol 141 (10) ◽  
pp. 3273-3299 ◽  
Author(s):  
Thomas A. Jones ◽  
Jason A. Otkin ◽  
David J. Stensrud ◽  
Kent Knopfmeier

Abstract An observing system simulation experiment is used to examine the impact of assimilating water vapor–sensitive satellite infrared brightness temperatures and Doppler radar reflectivity and radial velocity observations on the analysis accuracy of a cool season extratropical cyclone. Assimilation experiments are performed for four different combinations of satellite, radar, and conventional observations using an ensemble Kalman filter assimilation system. Comparison with the high-resolution “truth” simulation indicates that the joint assimilation of satellite and radar observations reduces errors in cloud properties compared to the case in which only conventional observations are assimilated. The satellite observations provide the most impact in the mid- to upper troposphere, whereas the radar data also improve the cloud analysis near the surface and aloft as a result of their greater vertical resolution and larger overall sample size. Errors in the wind field are also significantly reduced when radar radial velocity observations were assimilated. Overall, assimilating both satellite and radar data creates the most accurate model analysis, which indicates that both observation types provide independent and complimentary information and illustrates the potential for these datasets for improving mesoscale model analyses and ensuing forecasts.


Sign in / Sign up

Export Citation Format

Share Document