scholarly journals On the Rapid Weakening of Very Intense Tropical Cyclone Hellen (2014)

2019 ◽  
Vol 147 (8) ◽  
pp. 2717-2737 ◽  
Author(s):  
Adrien Colomb ◽  
Tarik Kriat ◽  
Marie-Dominique Leroux

Abstract In late March 2014, very intense Tropical Cyclone Hellen threatened the Comoros Archipelago and the Madagascan northwest coastline as it became one of the strongest tropical cyclones (TCs) ever observed over the Mozambique Channel. Its steep intensity changes were not well anticipated by operational forecasting models or by La Reunion regional specialized meteorological center forecasters. In particular, the record-setting rapid weakening over the open ocean was not supported by usual large-scale predictors. AROME, a new nonhydrostatic finescale model, is able to closely reproduce these wide intensity changes. When benchmarked against available observations, the model is also consistent in terms of inner-core structure, environmental features, track, and intensity. In the simulation, a northwesterly 400-hPa environmental wind is associated with unsaturated air, while the classic 200–850-hPa wind shear remains weak, and does not suggest a specifically unfavorable environment. The 400-hPa constraint affects the simulated storm through two pathways. Air with low equivalent potential temperature (θe) is flushed downward into the inflow layer in the upshear semicircle, triggering the decay of the storm. Then, direct erosion of the upper half of the warm core efficiently increases the surface pressure and also plays an instrumental role in the rapid weakening. When the storm gets closer to the Madagascan coastline, low-θe air can be directly advected within the inflow layer. Results illustrate on a real TC case the recently proposed paradigm for TC intensity modification under vertical wind shear and highlight the need for innovative tools to assess the impact of wind shear at all vertical levels.

2016 ◽  
Vol 144 (6) ◽  
pp. 2155-2175 ◽  
Author(s):  
Peter M. Finocchio ◽  
Sharanya J. Majumdar ◽  
David S. Nolan ◽  
Mohamed Iskandarani

Abstract Three sets of idealized, cloud-resolving simulations are performed to investigate the sensitivity of tropical cyclone (TC) structure and intensity to the height and depth of environmental vertical wind shear. In the first two sets of simulations, shear height and depth are varied independently; in the third set, orthogonal polynomial expansions are used to facilitate a joint sensitivity analysis. Despite all simulations having the same westerly deep-layer (200–850 hPa) shear of 10 m s−1, different intensity and structural evolutions are observed, suggesting the deep-layer shear alone may not be sufficient for understanding or predicting the impact of vertical wind shear on TCs. In general, vertical wind shear that is shallower and lower in the troposphere is more destructive to model TCs because it tilts the TC vortex farther into the downshear-left quadrant. The vortices that tilt the most are unable to precess upshear and realign, resulting in their failure to intensify. Shear height appears to modulate this tilt response by modifying the thermodynamic environment above the developing vortex early in the simulations, while shear depth modulates the tilt response by controlling the vertical extent of the convective vortex. It is also found that TC intensity predictability is reduced in a narrow range of shear heights and depths. This result underscores the importance of accurately observing the large-scale environmental flow for improving TC intensity forecasts, and for anticipating when such forecasts are likely to have large errors.


Author(s):  
Joshua J. Alland ◽  
Brian H. Tang ◽  
Kristen L. Corbosiero ◽  
George H. Bryan

AbstractThis study demonstrates how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via radial ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS environments. Two radial ventilation structures are documented. The first structure is positioned in a similar region as rainband activity and downdraft ventilation (documented in Part I) between heights of 0 and 3 km. Parcels associated with this first structure transport low-equivalent potential temperature air inward and downward left-of-shear and upshear to suppress convection. The second structure is associated with the vertical tilt of the vortex and storm-relative flow between heights of 5 and 9 km. Parcels associated with this second structure transport low-relative humidity air inward upshear and right-of-shear to suppress convection. Altogether, the modulating effects of radial ventilation on TC development are the inward transport of low-equivalent potential temperature air, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development.


2016 ◽  
Vol 73 (4) ◽  
pp. 1555-1575 ◽  
Author(s):  
Rosimar Rios-Berrios ◽  
Ryan D. Torn ◽  
Christopher A. Davis

Abstract The mechanisms leading to tropical cyclone (TC) intensification amid moderate vertical wind shear can vary from case to case, depending on the vortex structure and the large-scale conditions. To search for similarities between cases, this second part investigates the rapid intensification of Hurricane Ophelia (2011) in an environment characterized by 200–850-hPa westerly shear exceeding 8 m s−1. Similar to Part I, a 96-member ensemble was employed to compare a subset of members that predicted Ophelia would intensify with another subset that predicted Ophelia would weaken. This comparison revealed that the intensification of Ophelia was aided by enhanced convection and midtropospheric moisture in the downshear and left-of-shear quadrants. Enhanced left-of-shear convection was key to the establishment of an anticyclonic divergent outflow that forced a nearby upper-tropospheric trough to wrap around Ophelia. A vorticity budget showed that deep convection also contributed to the enhancement of vorticity within the inner core of Ophelia via vortex stretching and tilting of horizontal vorticity enhanced by the upper-tropospheric trough. These results suggest that TC intensity changes in sheared environments and in the presence of upper-tropospheric troughs highly depend on the interaction between convective-scale processes and the large-scale flow. Given the similarities between Part I and this part, the results suggest that observations from the three-dimensional moisture and wind fields could improve both forecasting and understanding of TC intensification in moderately sheared environments.


Author(s):  
Joshua B. Wadler ◽  
Joseph J. Cione ◽  
Jun A. Zhang ◽  
Evan A. Kalina ◽  
John Kaplan

AbstractThe relationship between deep-layer environmental wind shear direction and tropical cyclone (TC) boundary layer thermodynamic structures is explored in multiple independent databases. Analyses derived from the tropical cyclone buoy database (TCBD) show that when TCs experience northerly-component shear, the 10-m equivalent potential temperature (θe) tends to be more symmetric than when shear has a southerly component. The primary asymmetry in θe in TCs experiencing southerly-component shear is radially outwards from twice the radius of maximum wind speed, with the left-of-shear quadrants having lower θe by 4–6 K than the right-of-shear quadrants. As with the TCBD, an asymmetric (symmetric) distribution of 10-m θe for TCs experiencing southerly-component (northerly-component) shear was found using composite observations from dropsondes. These analyses show that differences in the degree of symmetry near the sea surface extend through the depth of the boundary layer. Additionally, mean dropsonde profiles illustrate that TCs experiencing northerly-component shear are more potentially unstable between 500 m and 1000 m altitude, signaling a more favorable environment for the development of surface-based convection in rainband regions.Analyses from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) Database show that subsequent strengthening (weakening) for TCs in the Atlantic Basin preferentially occurs in northerly-component (southerly-component) deep-layer environmental wind shear environments which further illustrates that the asymmetric distribution of boundary layer thermodynamics is unfavorable for TC intensification. These differences emphasize the impact of deep-layer wind shear direction on TC intensity changes which likely result from the superposition of large-scale advection with the shear-relative asymmetries in TC structure.


Author(s):  
Joshua J. Alland ◽  
Brian H. Tang ◽  
Kristen L. Corbosiero ◽  
George H. Bryan

AbstractThis study examines how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via downdraft ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS. A strong, positive, linear relationship exists between the low-level vertical mass flux in the inner core and TC intensity. The linear increase in vertical mass flux with intensity is not due to an increased strength of upward motions but, instead, is due to an increased areal extent of strong upward motions (w > 0:5 m s−1). This relationship suggests physical processes that could influence the vertical mass flux, such as downdraft ventilation, influence the intensity of a TC.The azimuthal asymmetry and strength of downdraft ventilation is associated with the vertical tilt of the vortex: downdraft ventilation is located cyclonically downstream from the vertical tilt direction and its strength is associated with the magnitude of the vertical tilt. Importantly, equivalent potential temperature of parcels associated with downdraft ventilation trajectories quickly recovers via surface fluxes in the subcloud layer, but the areal extent of strong upward motions is reduced. Altogether, the modulating effects of downdraft ventilation on TC development are the downward transport of low-equivalent potential temperature, negative-buoyancy air left-of-shear and into the upshear semicircle, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development.


2012 ◽  
Vol 25 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Liguang Wu ◽  
Haikun Zhao

Abstract The study of the impact of global warming on tropical cyclone (TC) intensity is subject to uncertainty in historical datasets, especially in the western North Pacific (WNP) basin, where conflicting results have been found with the TC datasets archived in different organizations. In this study the basinwide TC intensity in the WNP basin is derived dynamically with a TC intensity model, based on the track data from the Joint Typhoon Warning Center (JTWC), the Regional Specialized Meteorological Center (RSMC) of Tokyo, and the Shanghai Typhoon Institute (STI) of the China Meteorological Administration. The dynamically derived TC intensity is compared to the three datasets and used to investigate trends in TC intensity. The associated contributions of changes in SST, vertical wind shear, and prevailing tracks are also examined. The evolution of the basinwide TC intensity in the JTWC best-track dataset can be generally reproduced over the period 1975–2007. Dynamically derived data based on the JTWC, RSMC, and STI track datasets all show an increasing trend in the peak intensity and frequency of intense typhoons, mainly because of the combined effect of changes in SST and vertical wind shear. This study suggests that the increasing intensity trend in the JTWC dataset is real, but that it may be overestimated. In contrast, the TC intensity trends in the RSMC and STI intensity datasets are dynamically inconsistent. Numerical simulations also suggest that the frequency of intense typhoons is more sensitive to changes in SST and vertical wind shear than the peak and average intensities defined in previous studies.


Author(s):  
Peter M. Finocchio ◽  
Rosimar Rios-Berrios

AbstractThis study describes a set of idealized simulations in which westerly vertical wind shear increases from 3 to 15 m s−1 at different stages in the lifecycle of an intensifying tropical cyclone (TC). The TC response to increasing shear depends on the intensity and size of the TC’s tangential wind field when shear starts to increase. For a weak tropical storm, increasing shear decouples the vortex and prevents intensification. For Category 1 and stronger storms, increasing shear causes a period of weakening during which vortex tilt increases by 10–30 km before the TCs reach a near-steady Category 1–3 intensity at the end of the simulations. TCs exposed to increasing shear during or just after rapid intensification tend to weaken the most. Backward trajectories reveal a lateral ventilation pathway between 8–11 km altitude that is capable of reducing equivalent potential temperature in the inner core of these TCs by nearly 2°C. In addition, these TCs exhibit large reductions in diabatic heating inside the radius of maximum winds (RMW) and lower-entropy air parcels entering downshear updrafts from the boundary layer, which further contributes to their substantial weakening. The TCs exposed to increasing shear after rapid intensification and an expansion of the outer wind field reach the strongest near-steady intensity long after the shear increases because of strong vertical coupling that prevents the development of large vortex tilt, resistance to lateral ventilation through a deep layer of the middle troposphere, and robust diabatic heating within the RMW.


2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2008 ◽  
Vol 136 (11) ◽  
pp. 4320-4333 ◽  
Author(s):  
Alexander Lowag ◽  
Michael L. Black ◽  
Matthew D. Eastin

Abstract Hurricane Bret underwent a rapid intensification (RI) and subsequent weakening between 1200 UTC 21 August and 1200 UTC 22 August 1999 before it made landfall on the Texas coast 12 h later. Its minimum sea level pressure fell 35 hPa from 979 to 944 hPa within 24 h. During this period, aircraft of the National Oceanic and Atmospheric Administration (NOAA) flew several research missions that sampled the environment and inner core of the storm. These datasets are combined with gridded data from the National Centers for Environmental Prediction (NCEP) Global Model and the NCEP–National Center for Atmospheric Research (NCAR) reanalyses to document Bret’s atmospheric and oceanic environment as well as their relation to the observed structural and intensity changes. Bret’s RI was linked to movement over a warm ocean eddy and high sea surface temperatures (SSTs) in the Gulf of Mexico coupled with a concurrent decrease in vertical wind shear. SSTs at the beginning of the storm’s RI were approximately 29°C and steadily increased to 30°C as it moved to the north. The vertical wind shear relaxed to less than 10 kt during this time. Mean values of oceanic heat content (OHC) beneath the storm were about 20% higher at the beginning of the RI period than 6 h prior. The subsequent weakening was linked to the cooling of near-coastal shelf waters (to between 25° and 26°C) by prestorm mixing combined with an increase in vertical wind shear. The available observations suggest no intrusion of dry air into the circulation core contributed to the intensity evolution. Sensitivity studies with the Statistical Hurricane Intensity Prediction Scheme (SHIPS) model were conducted to quantitatively describe the influence of environmental conditions on the intensity forecast. Four different cases with modified vertical wind shear and/or SSTs were studied. Differences between the four cases were relatively small because of the model design, but the greatest intensity changes resulted for much cooler prescribed SSTs. The results of this study underscore the importance of OHC and vertical wind shear as significant factors during RIs; however, internal dynamical processes appear to play a more critical role when a favorable environment is present.


2005 ◽  
Vol 20 (2) ◽  
pp. 199-211 ◽  
Author(s):  
Hui Yu ◽  
H. Joe Kwon

Abstract Using large-scale analyses, the effect of tropical cyclone–trough interaction on tropical cyclone (TC) intensity change is readdressed by studying the evolution of upper-level eddy flux convergence (EFC) of angular momentum and vertical wind shear for two TCs in the western North Pacific [Typhoons Prapiroon (2000) and Olga (1999)]. Major findings include the following: 1) In spite of decreasing SST, the cyclonic inflow associated with a midlatitude trough should have played an important role in Prapiroon’s intensification to its maximum intensity and the maintenance after recurvature through an increase in EFC. The accompanied large vertical wind shear is concentrated in a shallow layer in the upper troposphere. 2) Although Olga also recurved downstream of a midlatitude trough, its development and maintenance were not strongly influenced by the trough. A TC could maintain itself in an environment with or without upper-level eddy momentum forcing. 3) Both TCs started to decay over cold SST in a large EFC and vertical wind shear environment imposed by the trough. 4) Uncertainty of input adds difficulties in quantitative TC intensity forecasting.


Sign in / Sign up

Export Citation Format

Share Document