Assessing the Influence of Convective Downdrafts and Surface Enthalpy Fluxes on Tropical Cyclone Intensity Change in Moderate Vertical Wind Shear

2019 ◽  
Vol 147 (10) ◽  
pp. 3519-3534 ◽  
Author(s):  
Leon T. Nguyen ◽  
Robert Rogers ◽  
Jonathan Zawislak ◽  
Jun A. Zhang

Abstract The thermodynamic impacts of downdraft-induced cooling/drying and downstream recovery via surface enthalpy fluxes within tropical cyclones (TCs) were investigated using dropsonde observations collected from 1996 to 2017. This study focused on relatively weak TCs (tropical depression, tropical storm, category 1 hurricane) that were subjected to moderate (4.5–11.0 m s−1) levels of environmental vertical wind shear. The dropsonde data were analyzed in a shear-relative framework and binned according to TC intensity change in the 24 h following the dropsonde observation time, allowing for comparison between storms that underwent different intensity changes. Moisture and temperature asymmetries in the lower troposphere yielded a relative maximum in lower-tropospheric conditional instability in the downshear quadrants and a relative minimum in instability in the upshear quadrants, regardless of intensity change. However, the instability increased as the intensification rate increased, particularly in the downshear quadrants. This was due to increased boundary layer moist entropy relative to the temperature profile above the boundary layer. Additionally, significantly larger surface enthalpy fluxes were observed as the intensification rate increased, particularly in the upshear quadrants. These results suggest that in intensifying storms, enhanced surface enthalpy fluxes in the upshear quadrants allow downdraft-modified boundary layer air to recover moisture and heat more effectively as it is advected cyclonically around the storm. By the time the air reaches the downshear quadrants, the lower-tropospheric conditional instability is enhanced, which is speculated to be more favorable for updraft growth and deep convection.

2005 ◽  
Vol 62 (9) ◽  
pp. 3193-3212 ◽  
Author(s):  
Joey H. Y. Kwok ◽  
Johnny C. L. Chan

Abstract The influence of a uniform flow on the structural changes of a tropical cyclone (TC) is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Idealized experiments are performed on either an f plane or a β plane. A strong uniform flow on an f plane results in a weaker vortex due to the development of a vertical wind shear induced by the asymmetric vertical motion and a rotation of upper-level anticyclone. The asymmetric vertical motion also reduces the secondary circulation of the vortex. On a β plane with no flow, a broad anticyclonic flow is found to the southeast of the vortex, which expands with time. Similar to the f-plane case, asymmetric vertical motion and vertical wind shear are also found. This beta-induced shear weakens the no-flow case significantly relative to that on an f plane. When a uniform flow is imposed on a β plane, an easterly flow produces a stronger asymmetry whereas a westerly flow reduces it. In addition, an easterly uniform flow tends to strengthen the beta-induced shear whereas a westerly flow appears to reduce it by altering the magnitude and direction of the shear vector. As a result, a westerly flow enhances TC development while an easterly flow reduces it. The vortex tilt and midlevel warming found in this study agree with the previous investigations of vertical wind shear. A strong uniform flow with a constant f results in a tilted and deformed potential vorticity at the upper levels. For a variable f, such tilting is more pronounced for a vortex in an easterly flow, while a westerly flow reduces the tilt. In addition, the vortex tilt appears to be related to the midlevel warming such that the warm core in the lower troposphere cannot extent upward, which leads to the subsequent weakening of the TC.


Author(s):  
Branden Katona ◽  
Paul Markowski

AbstractStorms crossing complex terrain can potentially encounter rapidly changing convective environments. However, our understanding of terrain-induced variability in convective stormenvironments remains limited. HRRR data are used to create climatologies of popular convective storm forecasting parameters for different wind regimes. Self-organizing maps (SOMs) are used to generate six different low-level wind regimes, characterized by different wind directions, for which popular instability and vertical wind shear parameters are averaged. The climatologies show that both instability and vertical wind shear are highly variable in regions of complex terrain, and that the spatial distributions of perturbations relative to the terrain are dependent on the low-level wind direction. Idealized simulations are used to investigate the origins of some of the perturbations seen in the SOM climatologies. The idealized simulations replicate many of the features in the SOM climatologies, which facilitates analysis of their dynamical origins. Terrain influences are greatest when winds are approximately perpendicular to the terrain. In such cases, a standing wave can develop in the lee, leading to an increase in low-level wind speed and a reduction in vertical wind shear with the valley lee of the plateau. Additionally, CAPE tends to be decreased and LCL heights are increased in the lee of the terrain where relative humidity within the boundary layer is locally decreased.


2020 ◽  
Vol 12 (9) ◽  
pp. 1533 ◽  
Author(s):  
Tao Huang ◽  
Steve Hung-lam Yim ◽  
Yuanjian Yang ◽  
Olivia Shuk-ming Lee ◽  
David Hok-yin Lam ◽  
...  

Turbulent mixing is critical in affecting urban climate and air pollution. Nevertheless, our understanding of it, especially in a cloud-topped boundary layer (CTBL), remains limited. High-temporal resolution observations provide sufficient information of vertical velocity profiles, which is essential for turbulence studies in the atmospheric boundary layer (ABL). We conducted Doppler Light Detection and Ranging (LiDAR) measurements in 2019 using the 3-Dimensional Real-time Atmospheric Monitoring System (3DREAMS) to reveal the characteristics of typical daytime turbulent mixing processes in CTBL over Hong Kong. We assessed the contribution of cloud radiative cooling on turbulent mixing and determined the altitudinal dependence of the contribution of surface heating and vertical wind shear to turbulent mixing. Our results show that more downdrafts and updrafts in spring and autumn were observed and positively associated with seasonal cloud fraction. These results reveal that cloud radiative cooling was the main source of downdraft, which was also confirmed by our detailed case study of vertical velocity. Compared to winter and autumn, cloud base heights were lower in spring and summer. Cloud radiative cooling contributed ~32% to turbulent mixing even near the surface, although the contribution was relatively weaker compared to surface heating and vertical wind shear. Surface heating and vertical wind shear together contributed to ~45% of turbulent mixing near the surface, but wind shear can affect up to ~1100 m while surface heating can only reach ~450 m. Despite the fact that more research is still needed to further understand the processes, our findings provide useful references for local weather forecast and air quality studies.


2020 ◽  
Vol 77 (5) ◽  
pp. 1865-1885 ◽  
Author(s):  
Qingfang Jiang

Abstract The influence of swell on turbulence and scalar profiles in a marine surface layer and underlying physics is examined in this study through diagnosis of large-eddy simulations (LES) that explicitly resolve the surface layer and underlying swell. In general, under stable conditions, the mean wind and scalar profiles can be significantly modified by swell. The influence of swell on wind shear, turbulence structure, scalar profiles, and evaporation duct (ED) characteristics becomes less pronounced in a more convective boundary layer, where the buoyancy production of turbulence is significant. Dynamically, swell has little direct impact on scalar profiles. Instead it modifies the vertical wind shear by exerting pressure drag on the wave boundary layer. The resulting redistribution of vertical wind shear leads to changes in turbulence production and therefore turbulence mixing of scalars. Over swell, the eddy diffusivities from LES systematically deviate from the Monin–Obukhov similarity theory (MOST) prediction, implying that MOST becomes invalid over a swell-dominated sea. The deviations from MOST are more pronounced in a neutral or stable boundary layer under relatively low winds and less so in a convective boundary layer.


2005 ◽  
Vol 20 (2) ◽  
pp. 199-211 ◽  
Author(s):  
Hui Yu ◽  
H. Joe Kwon

Abstract Using large-scale analyses, the effect of tropical cyclone–trough interaction on tropical cyclone (TC) intensity change is readdressed by studying the evolution of upper-level eddy flux convergence (EFC) of angular momentum and vertical wind shear for two TCs in the western North Pacific [Typhoons Prapiroon (2000) and Olga (1999)]. Major findings include the following: 1) In spite of decreasing SST, the cyclonic inflow associated with a midlatitude trough should have played an important role in Prapiroon’s intensification to its maximum intensity and the maintenance after recurvature through an increase in EFC. The accompanied large vertical wind shear is concentrated in a shallow layer in the upper troposphere. 2) Although Olga also recurved downstream of a midlatitude trough, its development and maintenance were not strongly influenced by the trough. A TC could maintain itself in an environment with or without upper-level eddy momentum forcing. 3) Both TCs started to decay over cold SST in a large EFC and vertical wind shear environment imposed by the trough. 4) Uncertainty of input adds difficulties in quantitative TC intensity forecasting.


2015 ◽  
Vol 143 (5) ◽  
pp. 1762-1781 ◽  
Author(s):  
Fei He ◽  
Derek J. Posselt ◽  
Colin M. Zarzycki ◽  
Christiane Jablonowski

Abstract This paper presents a balanced tropical cyclone (TC) test case designed to improve current understanding of how atmospheric general circulation model (AGCM) configurations affect simulated TC development and behavior. It consists of an analytic initial condition comprising two independently balanced components. The first provides a vortical TC seed, while the second adds a planetary-scale zonal flow with height-dependent velocity and imposes background vertical wind shear (VWS) on the TC seed. The environmental flow satisfies the steady-state hydrostatic primitive equations in spherical coordinates and is in balance with other background field variables (e.g., temperature, surface geopotential). The evolution of idealized TCs in the test case framework is illustrated in 10-day simulations performed with the Community Atmosphere Model, version 5.1.1 (CAM 5.1.1). Environmental wind profiles with different magnitudes, directions, and vertical inflection points are applied to ensure that the technique is robust to changes in the VWS characteristics. The well-known shear-induced intensity change and structural asymmetry in tropical cyclones are well captured. Sensitivity of TC evolution to small perturbations in the initial vortex is also quantitatively addressed to validate the numerical robustness of the technique. It is concluded that the enhanced TC test case can be used to evaluate the impact of model choice (e.g., resolution, physical parameterizations) on the simulation and representation of TC-like vortices in AGCMs.


2014 ◽  
Vol 29 (5) ◽  
pp. 1169-1180 ◽  
Author(s):  
Christopher S. Velden ◽  
John Sears

Abstract Vertical wind shear is well known in the tropical cyclone (TC) forecasting community as an important environmental influence on storm structure and intensity change. The traditional way to define deep-tropospheric vertical wind shear in most prior research studies, and in operational forecast applications, is to simply use the vector difference of the 200- and 850-hPa wind fields based on global model analyses. However, is this rather basic approach to approximate vertical wind shear adequate for most TC applications? In this study, the traditional approach is compared to a different methodology for generating fields of vertical wind shear as produced by the University of Wisconsin Cooperative Institute for Meteorological Satellite Studies (CIMSS). The CIMSS fields are derived with heavy analysis weight given to available high-density satellite-derived winds. The resultant isobaric analyses are then used to create two mass-weighted layer-mean wind fields, one upper and one lower tropospheric, which are then differenced to produce the deep-tropospheric vertical wind shear field. The principal novelty of this approach is that it does not rely simply on the analyzed winds at two discrete levels, but instead attempts to account for some of the variable vertical wind structure in the calculation. It will be shown how the resultant vertical wind shear fields derived by the two approaches can diverge significantly in certain situations; the results also suggest that in many cases it is superior in depicting the wind structure's impact on TCs than the simple two-level differential that serves as the common contemporary vertical wind shear approximation.


2020 ◽  
Vol 35 (3) ◽  
pp. 939-958 ◽  
Author(s):  
Russell L. Elsberry ◽  
Natasha Buholzer ◽  
Christopher S. Velden ◽  
Mary S. Jordan

Abstract A CIMSS vertical wind shear (VWS-C) dataset based on reprocessed GOES-East atmospheric motion vectors (AMVs) at 15-min intervals has a −0.36 correlation with the CIMSS Satellite Consensus (SATCON) intensity changes at 30-min intervals over the life cycle of Hurricane Joaquin (2015). Correlations are then calculated for four intensity change events including two rapid intensifications (RIs) and two decays, and four intensity change segments immediately before or after these events. During the first RI, the peak intensity increase of 16 kt (6 h)−1 (1 kt ≈ 0.51 m s−1) follows a small VWS-C decrease to a moderate 8 m s−1 value (negative correlation). A 30-h period of continued RI following the first peak RI occurred under moderate magnitude VWS-C (negative correlation), but with a rotation of the VWS-C direction to become more aligned with the southwestward heading of Joaquin. During the second RI, the peak intensity increase of 15 kt (6 h)−1 leads the rapid VWS-C increase (positive correlation), which the horizontal plots of VWS-C vectors demonstrate is related to an upper-tropospheric cyclone to the northeast of Joaquin. A conceptual model of ocean cooling within the anticyclonic track loop is proposed to explain a counterintuitive decreasing intensity when the VWS-C was also decreasing (positive correlation) during the Joaquin track reversal. These alternating negative and positive correlations during the four events and four segments of intensity change demonstrate the nonlinear relationships between the VWS-C and intensity changes during the life cycle of Joaquin that must be understood, analyzed, and modeled to improve tropical cyclone intensity forecasts, and especially RI events.


2009 ◽  
Vol 9 (3) ◽  
pp. 10711-10775 ◽  
Author(s):  
M. Riemer ◽  
M. T. Montgomery ◽  
M. E. Nicholls

Abstract. An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the classical idealised numerical experiment of tropical cyclones (TCs) in vertical wind shear on an f-plane. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. A suite of experiments is performed with intense TCs in moderate to strong vertical shear. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent downdrafts flux low θe air from the lower and middle troposphere into the boundary layer, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a strong correlation between the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the inflow layer with low θe air are associated with a quasi-stationary region of convective activity outside the TC's eyewall. We show evidence that, to zero order, the formation of the convective asymmetry is driven by the balanced dynamical response of the TC vortex to the vertical shear forcing. Thus a close link is provided between the thermodynamic impact in the near-core boundary layer and the balanced dynamics governing the TC vortex evolution.


Sign in / Sign up

Export Citation Format

Share Document