Multiresolution Ensemble Forecasts of an Observed Tornadic Thunderstorm System. Part I: Comparsion of Coarse- and Fine-Grid Experiments

2006 ◽  
Vol 134 (3) ◽  
pp. 807-833 ◽  
Author(s):  
Fanyou Kong ◽  
Kelvin K. Droegemeier ◽  
Nicki L. Hickmon

Abstract Using a nonhydrostatic numerical model with horizontal grid spacing of 24 km and nested grids of 6- and 3-km spacing, the authors employ the scaled lagged average forecasting (SLAF) technique, developed originally for global and synoptic-scale prediction, to generate ensemble forecasts of a tornadic thunderstorm complex that occurred in north-central Texas on 28–29 March 2000. This is the first attempt, to their knowledge, in applying ensemble techniques to a cloud-resolving model using radar and other observations assimilated within nonhorizontally uniform initial conditions and full model physics. The principal goal of this study is to investigate the viability of ensemble forecasting in the context of explicitly resolved deep convective storms, with particular emphasis on the potential value added by fine grid spacing and probabilistic versus deterministic forecasts. Further, the authors focus on the structure and growth of errors as well as the application of suitable quantitative metrics to assess forecast skill for highly intermittent phenomena at fine scales. Because numerous strategies exist for linking multiple nested grids in an ensemble framework with none obviously superior, several are examined, particularly in light of how they impact the structure and growth of perturbations. Not surprisingly, forecast results are sensitive to the strategy chosen, and owing to the rapid growth of errors on the convective scale, the traditional SLAF methodology of age-based scaling is replaced by scaling predicated solely upon error magnitude. This modification improves forecast spread and skill, though the authors believe errors grow more slowly than is desirable. For all three horizontal grid spacings utilized, ensembles show both qualitative and quantitative improvement relative to their respective deterministic control forecasts. Nonetheless, the evolution of convection at 24- and 6-km spacings is vastly different from, and arguably inferior to, that at 3 km because at 24-km spacing, the model cannot explicitly resolve deep convection while at 6 km, the deep convection closure problem is ill posed and clouds are neither implicitly nor explicitly represented (even at 3-km spacing, updrafts and downdrafts only are marginally resolved). Despite their greater spatial fidelity, the 3-km grid spacing experiments are limited in that the ensemble mean reflectivity tends to be much weaker in intensity, and much broader in aerial extent, than that of any single 3-km spacing forecast owing to amplitude reduction and spatial smearing that occur when averaging is applied to spatially intermittent phenomena. The ensemble means of accumulated precipitation, on the other hand, preserve peak intensity quite well. Although a single case study obviously does not provide sufficient information with which to draw general conclusions, the results presented here, as well as those in Part II (which focuses solely on 3-km grid spacing experiments), suggest that even a small ensemble of cloud-resolving forecasts may provide greater skill, and greater practical value, than a single deterministic forecast using either the same or coarser grid spacing.

2007 ◽  
Vol 135 (3) ◽  
pp. 759-782 ◽  
Author(s):  
Fanyou Kong ◽  
Kelvin K. Droegemeier ◽  
Nicki L. Hickmon

Abstract In Part I, the authors used a full physics, nonhydrostatic numerical model with horizontal grid spacing of 24 km and nested grids of 6- and 3-km spacing to generate the ensemble forecasts of an observed tornadic thunderstorm complex. The principal goal was to quantify the value added by fine grid spacing, as well as the assimilation of Doppler radar data, in both probabilistic and deterministic frameworks. The present paper focuses exclusively on 3-km horizontal grid spacing ensembles and the associated impacts on the forecast quality of temporal forecast sequencing, the construction of initial perturbations, and data assimilation. As in Part I, the authors employ a modified form of the scaled lagged average forecasting technique and use Stage IV accumulated precipitation estimates for verification. The ensemble mean and spread of accumulated precipitation are found to be similar in structure, mimicking their behavior in global models. Both the assimilation of Doppler radar data and the use of shorter (1–2 versus 3–5 h) forecast lead times improve ensemble precipitation forecasts. However, even at longer lead times and in certain situations without assimilated radar data, the ensembles are able to capture storm-scale features when the associated control forecast in a deterministic framework fails to do so. This indicates the potential value added by ensembles although this single case is not sufficient for drawing general conclusions. The creation of initial perturbations using forecasts of the same grid spacing shows no significant improvement over simply extracting perturbations from forecasts made at coarser spacing and interpolating them to finer grids. However, forecast quality is somewhat dependent upon perturbation amplitude, with smaller scaling values leading to significant underdispersion. Traditional forecast skill scores show somewhat contradictory results for accumulated precipitation, with the equitable threat score most consistent with qualitative performance.


2017 ◽  
Vol 32 (4) ◽  
pp. 1423-1440 ◽  
Author(s):  
Michael C. Kochasic ◽  
William A. Gallus ◽  
Christopher J. Schaffer

Abstract A neighborhood postprocessing approach that relates quantitative precipitation forecasts (QPF) to probability of precipitation (PoP) forecasts applied to a single model run was found by Schaffer et al. to be as good as traditional ensemble-based approaches using 10 members in 30-h forecasts of convective precipitation. The present study evaluates if PoP forecasts derived from additional variations of the approach can improve PoP forecasts further compared with previous methods. Ensemble forecasts from the Center for Analysis and Prediction of Storms (CAPS) are used for neighborhood tests comparing a single model run and a traditional ensemble. In the first test, PoP forecasts for different combinations of training and testing datasets using a single model member with 4-km grid spacing are compared against those obtained with a 10-member traditional ensemble. Overall, forecasts for the neighborhood approach with just one member are only slightly less accurate to those using a more traditional neighborhood approach with the ensemble. PoP forecasts improve when using older data for training and newer data for testing. Assessments of the sensitivity of the neighborhood PoPs suggest that thinning of the horizontal grid at fine grid spacing is an effective way of maintaining the accuracy of PoP forecasts while reducing computational expenses. In an additional test, the diurnal variation of the forecast is examined on a day-by-day basis, showing good agreement between the two approaches for all but a few cases during 2008.


2020 ◽  
Vol 148 (7) ◽  
pp. 2645-2669
Author(s):  
Craig S. Schwartz ◽  
May Wong ◽  
Glen S. Romine ◽  
Ryan A. Sobash ◽  
Kathryn R. Fossell

Abstract Five sets of 48-h, 10-member, convection-allowing ensemble (CAE) forecasts with 3-km horizontal grid spacing were systematically evaluated over the conterminous United States with a focus on precipitation across 31 cases. The various CAEs solely differed by their initial condition perturbations (ICPs) and central initial states. CAEs initially centered about deterministic Global Forecast System (GFS) analyses were unequivocally better than those initially centered about ensemble mean analyses produced by a limited-area single-physics, single-dynamics 15-km continuously cycling ensemble Kalman filter (EnKF), strongly suggesting relative superiority of the GFS analyses. Additionally, CAEs with flow-dependent ICPs derived from either the EnKF or multimodel 3-h forecasts from the Short-Range Ensemble Forecast (SREF) system had higher fractions skill scores than CAEs with randomly generated mesoscale ICPs. Conversely, due to insufficient spread, CAEs with EnKF ICPs had worse reliability, discrimination, and dispersion than those with random and SREF ICPs. However, members in the CAE with SREF ICPs undesirably clustered by dynamic core represented in the ICPs, and CAEs with random ICPs had poor spinup characteristics. Collectively, these results indicate that continuously cycled EnKF mean analyses were suboptimal for CAE initialization purposes and suggest that further work to improve limited-area continuously cycling EnKFs over large regional domains is warranted. Additionally, the deleterious aspects of using both multimodel and random ICPs suggest efforts toward improving spread in CAEs with single-physics, single-dynamics, flow-dependent ICPs should continue.


2017 ◽  
Vol 145 (8) ◽  
pp. 2943-2969 ◽  
Author(s):  
Craig S. Schwartz ◽  
Glen S. Romine ◽  
Kathryn R. Fossell ◽  
Ryan A. Sobash ◽  
Morris L. Weisman

Precipitation forecasts from convection-allowing ensembles with 3- and 1-km horizontal grid spacing were evaluated between 15 May and 15 June 2013 over central and eastern portions of the United States. Probabilistic forecasts produced from 10- and 30-member, 3-km ensembles were consistently better than forecasts from individual 1-km ensemble members. However, 10-member, 1-km probabilistic forecasts usually were best, especially over the first 12 h and at rainfall rates ≥ 5.0 mm h−1 at later times. Further object-based investigation revealed that better 1-km forecasts at heavier rainfall rates were associated with more accurate placement of mesoscale convective systems compared to 3-km forecasts. The collective results indicate promise for 1-km ensembles once computational resources can support their operational implementation.


2015 ◽  
Vol 143 (8) ◽  
pp. 2998-3024 ◽  
Author(s):  
Corey K. Potvin ◽  
Montgomery L. Flora

Abstract The Warn-on-Forecast (WoF) program aims to deploy real-time, convection-allowing, ensemble data assimilation and prediction systems to improve short-term forecasts of tornadoes, flooding, lightning, damaging wind, and large hail. Until convection-resolving (horizontal grid spacing Δx < 100 m) systems become available, however, resolution errors will limit the accuracy of ensemble model output. Improved understanding of grid spacing dependence of simulated convection is therefore needed to properly calibrate and interpret ensemble output, and to optimize trade-offs between model resolution and other computationally constrained parameters like ensemble size and forecast lead time. Toward this end, the authors examine grid spacing sensitivities of simulated supercells over Δx of 333 m–4 km. Storm environment and physics parameterization are varied among the simulations. The results suggest that 4-km grid spacing is too coarse to reliably simulate supercells, occasionally leading to premature storm demise, whereas 3-km simulations more often capture operationally important features, including low-level rotation tracks. Further decreasing Δx to 1 km enables useful forecasts of rapid changes in low-level rotation intensity, though significant errors remain (e.g., in timing). Grid spacing dependencies vary substantially among the experiments, suggesting that accurate calibration of ensemble output requires better understanding of how storm characteristics, environment, and parameterization schemes modulate grid spacing sensitivity. Much of the sensitivity arises from poorly resolving small-scale processes that impact larger (well resolved) scales. Repeating some of the 333-m simulations with coarsened initial conditions reveals that supercell forecasts can substantially benefit from reduced grid spacing even when limited observational density precludes finescale initialization.


2019 ◽  
Vol 147 (4) ◽  
pp. 1215-1235 ◽  
Author(s):  
Nathan Snook ◽  
Ming Xue ◽  
Youngsun Jung

Abstract An ensemble of 10 forecasts is produced for the 20 May 2013 Newcastle–Moore EF5 tornado and its parent supercell using a horizontal grid spacing of 50 m, nested within ensemble forecasts with 500-m horizontal grid spacing initialized via ensemble Kalman filter data assimilation of surface and radar observations. Tornadic circulations are predicted in all members, though the intensity, track, and longevity of the predicted tornado vary substantially among members. Overall, tornadoes in the ensemble forecasts persisted longer and moved to the northeast faster than the observed tornado. In total, 8 of the 10 ensemble members produce tornadoes with winds corresponding to EF2 intensity or greater, with maximum instantaneous near-surface horizontal wind speeds of up to 130 m s−1 and pressure drops of up to 120 hPa; values similar to those reported in observational studies of intense tornadoes. The predicted intense tornadoes all acquire well-defined two-cell vortex structure, and exhibit features common in observed tornadic storms, including a weak-echo notch and low reflectivity within the mesocyclone. Ensemble-based probabilistic tornado forecasts based upon near-surface wind and/or vorticity fields at 10 m above the surface produce skillful forecasts of the tornado in terms of area under the relative operating characteristic curve, with probability swaths extending along and to the northeast of the observed tornado path. When probabilistic swaths of 0–3- and 2–5-km updraft helicity are compared to the swath of wind at 10 m above the surface exceeding 29 m s−1, a slight northwestward bias is present, although the pathlength, orientation, and the placement of minima and maxima show very strong agreement.


2019 ◽  
Vol 34 (4) ◽  
pp. 849-867 ◽  
Author(s):  
William A. Gallus ◽  
Jamie Wolff ◽  
John Halley Gotway ◽  
Michelle Harrold ◽  
Lindsay Blank ◽  
...  

Abstract A well-known problem in high-resolution ensembles has been a lack of sufficient spread among members. Modelers often have used mixed physics to increase spread, but this can introduce problems including computational expense, clustering of members, and members that are not all equally skillful. Thus, a detailed examination of the impacts of using mixed physics is important. The present study uses two years of Community Leveraged Unified Ensemble (CLUE) output to isolate the impact of mixed physics in 36-h forecasts made using a convection-permitting ensemble with 3-km horizontal grid spacing. One 10-member subset of the CLUE used only perturbed initial conditions (ICs) and lateral boundary conditions (LBCs) while another 10-member ensemble used the same mixed ICs and LBCs but also introduced mixed physics. The cases examined occurred during NOAA’s Hazardous Weather Testbed Spring Forecast Experiments in 2016 and 2017. Traditional gridpoint metrics applied to each member and the ensemble as a whole, along with object-based verification statistics for all members, were computed for composite reflectivity and 1- and 3-h accumulated precipitation using the Model Evaluation Tools (MET) software package. It is found that the mixed physics increases variability substantially among the ensemble members, more so for reflectivity than precipitation, such that the envelope of members is more likely to encompass the observations. However, the increased variability is mostly due to the introduction of both substantial high biases in members using one microphysical scheme, and low biases in other schemes. Overall ensemble skill is not substantially different from the ensemble using a single physics package.


2017 ◽  
Vol 32 (4) ◽  
pp. 1403-1421 ◽  
Author(s):  
Eric D. Loken ◽  
Adam J. Clark ◽  
Ming Xue ◽  
Fanyou Kong

Abstract Given increasing computing power, an important question is whether additional computational resources would be better spent reducing the horizontal grid spacing of a convection-allowing model (CAM) or adding members to form CAM ensembles. The present study investigates this question as it applies to CAM-derived next-day probabilistic severe weather forecasts created by using forecast updraft helicity as a severe weather proxy for 63 days of the 2010 and 2011 NOAA Hazardous Weather Testbed Spring Forecasting Experiments. Forecasts derived from three sets of Weather Research and Forecasting Model configurations are tested: a 1-km deterministic model, a 4-km deterministic model, and an 11-member, 4-km ensemble. Forecast quality is evaluated using relative operating characteristic (ROC) curves, attributes diagrams, and performance diagrams, and forecasts from five representative cases are analyzed to investigate their relative quality and value in a variety of situations. While no statistically significant differences exist between the 4- and 1-km deterministic forecasts in terms of area under ROC curves, the 4-km ensemble forecasts offer weakly significant improvements over the 4-km deterministic forecasts over the entire 63-day dataset. Further, the 4-km ensemble forecasts generally provide greater forecast quality relative to either of the deterministic forecasts on an individual day. Collectively, these results suggest that, for purposes of improving next-day CAM-derived probabilistic severe weather forecasts, additional computing resources may be better spent on adding members to form CAM ensembles than on reducing the horizontal grid spacing of a deterministic model below 4 km.


2007 ◽  
Vol 46 (11) ◽  
pp. 1967-1980 ◽  
Author(s):  
Jason E. Nachamkin ◽  
John Cook ◽  
Mike Frost ◽  
Daniel Martinez ◽  
Gary Sprung

Abstract Lagrangian parcel models are often used to predict the fate of airborne hazardous material releases. The atmospheric input for these integrations is typically supplied by surrounding surface and upper-air observations. However, situations may arise in which observations are unavailable and numerical model forecasts may be the only source of atmospheric data. In this study, the quality of the atmospheric forecasts for use in dispersion applications is investigated as a function of the horizontal grid spacing of the atmospheric model. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) was used to generate atmospheric forecasts for 14 separate Dipole Pride 26 trials. The simulations consisted of four telescoping one-way nested grids with horizontal spacings of 27, 9, 3, and 1 km, respectively. The 27- and 1-km forecasts were then used as input for dispersion forecasts using the Hazard Prediction Assessment Capability (HPAC) modeling system. The resulting atmospheric and dispersion forecasts were then compared with meteorological and gas-dosage observations collected during Dipole Pride 26. Although the 1-km COAMPS forecasts displayed considerably more detail than those on the 27-km grid, the RMS and bias statistics associated with the atmospheric observations were similar. However, statistics from the HPAC forecasts showed the 1-km atmospheric forcing produced more accurate trajectories than the 27-km output when compared with the dosage measurements.


2019 ◽  
Vol 147 (12) ◽  
pp. 4411-4435 ◽  
Author(s):  
Craig S. Schwartz ◽  
Ryan A. Sobash

Abstract Hourly accumulated precipitation forecasts from deterministic convection-allowing numerical weather prediction models with 3- and 1-km horizontal grid spacing were evaluated over 497 forecasts between 2010 and 2017 over the central and eastern conterminous United States (CONUS). While precipitation biases varied geographically and seasonally, 1-km model climatologies of precipitation generally aligned better with those observed than 3-km climatologies. Additionally, during the cool season and spring, when large-scale forcing was strong and precipitation entities were large, 1-km forecasts were more skillful than 3-km forecasts, particularly over southern portions of the CONUS where instability was greatest. Conversely, during summertime, when synoptic-scale forcing was weak and precipitation entities were small, 3- and 1-km forecasts had similar skill. These collective results differ substantially from previous work finding 4-km forecasts had comparable springtime precipitation forecast skill as 1- or 2-km forecasts over the central–eastern CONUS. Additional analyses and experiments suggest the greater benefits of 1-km forecasts documented here could be related to higher-quality initial conditions than in prior studies. However, further research is needed to confirm this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document