scholarly journals Two-Way Air–Sea Coupling: A Study of the Adriatic

2006 ◽  
Vol 134 (5) ◽  
pp. 1465-1483 ◽  
Author(s):  
Julie Pullen ◽  
James D. Doyle ◽  
Richard P. Signell

Abstract High-resolution numerical simulations of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) were conducted to examine the impact of the coupling strategy (one versus two way) on the ocean and atmosphere model skill, and to elucidate dynamical aspects of the coupled response. Simulations for 23 September–23 October 2002 utilized 2- and 4-km resolution grids for the ocean and atmosphere, respectively. During a strong wind and sea surface cooling event, cold water fringed the west and north coasts in the two-way coupled simulation (where the atmosphere interacted with SST generated by the ocean model) and attenuated by approximately 20% of the cross-basin extension of bora-driven upward heat fluxes relative to the one-way coupled simulation (where the atmosphere model was not influenced by the ocean model). An assessment of model results using remotely sensed and in situ measurements of ocean temperature along with overwater and coastal wind observations showed enhanced skill in the two-way coupled model. In particular, the two-way coupled model produced spatially complex SSTs after the cooling event that compared more favorably (using mean bias and rms error) with satellite multichannel SST (MCSST) and had a stabilizing effect on the atmosphere. As a consequence, mean mixing was suppressed by over 20% in the atmospheric boundary layer and more realistic mean 10-m wind speeds were produced during the monthlong two-way coupled simulation.

2021 ◽  
Author(s):  
Véra Oerder ◽  
Pierre-Amaël Auger ◽  
Joaquim Bento ◽  
Samuel Hormazabal

<p><span> Regional high resolution biogeochemical modeling studies generaly use an oceanic model forced by prescribed atmospheric conditions. The computational cost of such approach is far lower than using an high resolution ocean-atmosphere coupled model. However, forced oceanic models cannot represent adequately the atmospheric reponse to the oceanic mesoscale (~10-100km) structures and the impact on the oceanic dynamics.</span></p><p><span>To assess the bias introduce by the use of a forced model, we compare here a regional high resolution (1/12º) ocean-atmosphere coupled model with oceanic simulations forced by the outputs of the coupled simulation. Several classical forcing strategies are compared : bulk formulae, prescribed stress, prescribed heat fluxes with or without Sea Surface Temperature (SST) restoring term, .... We study the Chile Eastern Boundary Upwelling System, and the oceanic model includes a biogeochemical component,</span></p><p><span>The coupled model oceanic mesoscale impacts the atmosphere through surface current and SST anomalies. Surface currents mainly affect the wind stress while SST impacts both the wind stress and the heat fluxes. In the forced simulations, mesoscale structures generated by the model internal variability does not correspond to those of the coupled simulation. According to the forcing strategy, the atmospheric conditions are not modified by the forced model mesoscale, or the modifications are not realistic. The regional dynamics (coastal upwelling, mesoscale activity, …) is affected, with impact on the biogeochemical activity.</span></p><p> </p><p> </p><p><em>This work was supported by the FONDECYT project 3180472 (Chile), with computational support of the NLHPC from the Universidad de Chile, the HPC from the Pontificia Universidad Catolica de Valparaiso and the Irene HPC from the GENCI at the CEA (France).</em></p>


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
Soline Bielli ◽  
Christelle Barthe ◽  
Olivier Bousquet ◽  
Pierre Tulet ◽  
Joris Pianezze

A set of numerical simulations is relied upon to evaluate the impact of air-sea interactions on the behaviour of tropical cyclone (TC) Bejisa (2014), using various configurations of the coupled ocean-atmosphere numerical system Meso-NH-NEMO. Uncoupled (SST constant) as well as 1D (use of a 1D ocean mixed layer) and 3D (full 3D ocean) coupled experiments are conducted to evaluate the impact of the oceanic response and dynamic processes, with emphasis on the simulated structure and intensity of TC Bejisa. Although the three experiments are shown to properly capture the track of the tropical cyclone, the intensity and the spatial distribution of the sea surface cooling show strong differences from one coupled experiment to another. In the 1D experiment, sea surface cooling (∼1 ∘C) is reduced by a factor 2 with respect to observations and appears restricted to the depth of the ocean mixed layer. Cooling is maximized along the right-hand side of the TC track, in apparent disagreement with satellite-derived sea surface temperature observations. In the 3D experiment, surface cooling of up to 2.5 ∘C is simulated along the left hand side of the TC track, which shows more consistency with observations both in terms of intensity and spatial structure. In-depth cooling is also shown to extend to a much deeper depth, with a secondary maximum of nearly 1.5 ∘C simulated near 250 m. With respect to the uncoupled experiment, heat fluxes are reduced from about 20% in both 1D and 3D coupling configurations. The tropical cyclone intensity in terms of occurrence of 10-m TC wind is globally reduced in both cases by about 10%. 3D-coupling tends to asymmetrize winds aloft with little impact on intensity but rather a modification of the secondary circulation, resulting in a slight change in structure.


2009 ◽  
Vol 22 (10) ◽  
pp. 2541-2556 ◽  
Author(s):  
Malcolm J. Roberts ◽  
A. Clayton ◽  
M.-E. Demory ◽  
J. Donners ◽  
P. L. Vidale ◽  
...  

Abstract Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.


2013 ◽  
Vol 26 (1) ◽  
pp. 231-245 ◽  
Author(s):  
Michael Winton ◽  
Alistair Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
Larry W. Horowitz ◽  
...  

Abstract The influence of alternative ocean and atmosphere subcomponents on climate model simulation of transient sensitivities is examined by comparing three GFDL climate models used for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The base model ESM2M is closely related to GFDL’s CMIP3 climate model version 2.1 (CM2.1), and makes use of a depth coordinate ocean component. The second model, ESM2G, is identical to ESM2M but makes use of an isopycnal coordinate ocean model. The authors compare the impact of this “ocean swap” with an “atmosphere swap” that produces the GFDL Climate Model version 3 (CM3) by replacing the AM2 atmospheric component with AM3 while retaining a depth coordinate ocean model. The atmosphere swap is found to have much larger influence on sensitivities of global surface temperature and Northern Hemisphere sea ice cover. The atmosphere swap also introduces a multidecadal response time scale through its indirect influence on heat uptake. Despite significant differences in their interior ocean mean states, the ESM2M and ESM2G simulations of these metrics of climate change are very similar, except for an enhanced high-latitude salinity response accompanied by temporarily advancing sea ice in ESM2G. In the ESM2G historical simulation this behavior results in the establishment of a strong halocline in the subpolar North Atlantic during the early twentieth century and an associated cooling, which are counter to observations in that region. The Atlantic meridional overturning declines comparably in all three models.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Akiyoshi Wada ◽  
Norihisa Usui

We investigated the impact of variations in oceanic preexisting conditions on predictions of Typhoon Hai-Tang (2005) by using a coupled atmosphere-ocean model with 6-km horizontal resolution and providing the oceanic initial conditions on 12 July from 1997 to 2005 to the model. Variations in oceanic preexisting conditions caused variation in predicted central pressure of nearly 18 hPa at 72 h, whereas sea-surface cooling (SSC) induced by Hai-Tang caused a predicted central pressure difference of about 40 hPa. Warm-core oceanic eddies up to a few hundred kilometers across and a deep mixed layer climatologically distributed in the western North Pacific led to high mixed-layer heat potential, which increased latent heat flux, water vapor, and liquid water contents around Hai-Tang's center. These increases were closely associated with Hai-Tang's intensification. SSC negatively affected the eyewall, whereas variations in oceanic preexisting conditions remarkably affected spiral rainbands and the magnitude of SSC.


2016 ◽  
Vol 9 (10) ◽  
pp. 3655-3670 ◽  
Author(s):  
Helene T. Hewitt ◽  
Malcolm J. Roberts ◽  
Pat Hyder ◽  
Tim Graham ◽  
Jamie Rae ◽  
...  

Abstract. There is mounting evidence that resolving mesoscale eddies and western boundary currents as well as topographically controlled flows can play an important role in air–sea interaction associated with vertical and lateral transports of heat and salt. Here we describe the development of the Met Office Global Coupled Model version 2 (GC2) with increased resolution relative to the standard model: the ocean resolution is increased from 1/4 to 1/12° (28 to 9 km at the Equator), the atmosphere resolution increased from 60 km (N216) to 25 km (N512) and the coupling period reduced from 3 hourly to hourly. The technical developments that were required to build a version of the model at higher resolution are described as well as results from a 20-year simulation. The results demonstrate the key role played by the enhanced resolution of the ocean model: reduced sea surface temperature (SST) biases, improved ocean heat transports, deeper and stronger overturning circulation and a stronger Antarctic Circumpolar Current. Our results suggest that the improvements seen here require high resolution in both atmosphere and ocean components as well as high-frequency coupling. These results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.


2016 ◽  
Author(s):  
Helene T. Hewitt ◽  
Malcolm J. Roberts ◽  
Pat Hyder ◽  
Tim Graham ◽  
Jamie Rae ◽  
...  

Abstract. There is mounting evidence that resolving mesoscale eddies and boundary currents in the surface ocean field can play an important role in air-sea interaction associated with vertical and lateral transports of heat and salt. Here we describe the development of the Met Office Global Coupled Model version 2 (GC2) with increased resolution relative to the standard model: the ocean resolution is increased from 1/4° to 1/12° (28 km to 9 km at the Equator), the atmosphere resolution increased from 60 km (N216) to 25 km (N512) and the coupling frequency increased from 3-hourly to hourly. The technical developments that were required to build a version of the model at higher resolution are described as well as results from a 20 year simulation. The results demonstrate the key role played by the enhanced resolution of the ocean model: reduced Sea Surface Temperature biases, improved ocean heat transports, deeper and stronger overturning circulation and a stronger Antarctic Circumpolar Current. Our results suggest that the improvements seen here require high resolution in both atmosphere and ocean components as well as high frequency coupling. These results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.


2008 ◽  
Vol 21 (24) ◽  
pp. 6616-6635 ◽  
Author(s):  
Kathy Pegion ◽  
Ben P. Kirtman

Abstract The impact of coupled air–sea feedbacks on the simulation of tropical intraseasonal variability is investigated in this study using the National Centers for Environmental Prediction Climate Forecast System. The simulation of tropical intraseasonal variability in a freely coupled simulation is compared with two simulations of the atmospheric component of the model. In one experiment, the uncoupled model is forced with the daily sea surface temperature (SST) from the coupled run. In the other, the uncoupled model is forced with climatological SST from the coupled run. Results indicate that the overall intraseasonal variability of precipitation is reduced in the coupled simulation compared to the uncoupled simulation forced by daily SST. Additionally, air–sea coupling is responsible for differences in the simulation of the tropical intraseasonal oscillation between the coupled and uncoupled models, specifically in terms of organization and propagation in the western Pacific. The differences between the coupled and uncoupled simulations are due to the fact that the relationships between precipitation and SST and latent heat flux and SST are much stronger in the coupled model than in the uncoupled model. Additionally, these relationships are delayed by about 5 days in the uncoupled model compared to the coupled model. As demonstrated by the uncoupled simulation forced with climatological SST, some of the intraseasonal oscillation can be simulated by internal atmospheric dynamics. However, the intraseasonally varying SST appears to be important to the amplitude and propagation of the oscillation beyond the Maritime Continent.


2013 ◽  
Vol 26 (16) ◽  
pp. 5846-5862 ◽  
Author(s):  
Giuseppe Zappa ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges ◽  
Phil G. Sansom ◽  
David B. Stephenson

Abstract The response of North Atlantic and European extratropical cyclones to climate change is investigated in the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). In contrast to previous multimodel studies, a feature-tracking algorithm is here applied to separately quantify the responses in the number, the wind intensity, and the precipitation intensity of extratropical cyclones. Moreover, a statistical framework is employed to formally assess the uncertainties in the multimodel projections. Under the midrange representative concentration pathway (RCP4.5) emission scenario, the December–February (DJF) response is characterized by a tripolar pattern over Europe, with an increase in the number of cyclones in central Europe and a decreased number in the Norwegian and Mediterranean Seas. The June–August (JJA) response is characterized by a reduction in the number of North Atlantic cyclones along the southern flank of the storm track. The total number of cyclones decreases in both DJF (−4%) and JJA (−2%). Classifying cyclones according to their intensity indicates a slight basinwide reduction in the number of cyclones associated with strong winds, but an increase in those associated with strong precipitation. However, in DJF, a slight increase in the number and intensity of cyclones associated with strong wind speeds is found over the United Kingdom and central Europe. The results are confirmed under the high-emission RCP8.5 scenario, where the signals tend to be larger. The sources of uncertainty in these projections are discussed.


2020 ◽  
Author(s):  
Mingkui Li ◽  
Shaoqing Zhang

<p>A regional coupled prediction system for the Asia-Pacific area (AP-RCP) has been established. The AP-RCP system consists of WRF-ROMS (Weather Research and Forecast and Regional Ocean Model System) coupled models combined with local observing information through dynamically downscaling coupled data assimilation. The system generates 18-day atmospheric and oceanic environment forecasts on a daily quasi-operational schedule at Qingdao Pilot National Laboratory for Marine Science and Technology (QNLM). The AP-RCP system mainly includes 2 different coupled model resolutions: 27km WRF coupled with 9km ROMS, and 9km WRF coupled with 3km ROMS. This study evaluates the impact of enhancing coupled model resolution on the extended-range forecasts, focusing on forecasts of typhoon onset, and improved precipitation and typhoon intensity forecasts. Results show that enhancing coupled model resolution is a necessary step to realize the extended-range predictability of the atmosphere and ocean environmental conditions that include a plenty of local details. The next challenges include improving the planetary boundary physics and the representation of air-sea and air-land interactions when the model can resolve the kilometer or sub-kilometer processes.</p>


Sign in / Sign up

Export Citation Format

Share Document