regional ocean model system
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Fan Lin ◽  
Lars Asplin ◽  
Hao Wei

The summertime M2 internal tide in the northern Yellow Sea is investigated with moored current meter observations and numerical current model results. The hydrodynamic model, which is implemented from the Regional Ocean Model System (ROMS) with 1 km horizontal resolution, is capable of resolving the internal tidal dynamics and the results are validated in a comparison with observations. The vertical pattern of a mode-1, semi-diurnal internal tide is clearly captured by the moored ADCP as well as in the simulation results. Spectral analysis of the current results shows that the M2 internal tide is dominant in the northern Yellow Sea. Analysis of the major M2 internal tide energetics demonstrated a complex spatial pattern. The tidal mixing front along the Korean coast and on the northern shelf provided proper conditions for the generation and propagation of the internal tides. Near the Changshan islands, the M2 internal tide is mainly generated near the local topography anomalies with relatively strong current magnitude, equal to about 30% of the barotropic component, thus modifying the local current field. These local internal tides are short-lived phenomena rapidly being dissipated along the propagation pathway, restricting their influence within a few kilometers around the islands.


2021 ◽  
Author(s):  
Prabha Kushwaha ◽  
Vivek Kumar Pandey

Abstract This study attempted to demonstrate the skill of the regional ocean model system (ROMS) is simulating the hydrographic property of the Arabian Sea (AS). Additionally, the impact of horizontal resolution is investigated. In this regard, ROMS is integrated over AS covering [30˚E-80˚E; 5˚N-30N˚] at two different horizontal resolutions 1/6˚(~ 17km) and 1/4˚(~ 25km) for ten years. The comparison of model results with available observation and reanalysis indicates reasonable resemblances in reproducing the spatial-temporal distribution of surface and subsurface hydrographic property i.e. sea surface temperature (SST), sea surface salinity (SSS), sea surface currents, and subsurface temperature and salinity at both resolutions. The increasing resolution shows minimal improvement, indicating the fact that its not always guaranty to enhance the performance towards increasing resolution for every aspect.


2021 ◽  
Author(s):  
Subekti Mujiasih ◽  
Jean-Marie Beckers ◽  
Alexander Barth

<p>Regional Ocean Model System (ROMS) has been simulated for the Sunda Strait, the Java Sea, and the Indian Ocean. The simulation was undertaken for thirteen months of data period (August 2013 – August 2014). However, we only used four months period for validation, namely September – December 2013. The input data involved the HYbrid Coordinate Ocean Model (HYCOM) ocean model output by considering atmospheric forcing from the European Centre for Medium-Range Weather Forecasts (ECMWF), without and with tides forcing from TPXO and rivers. The output included vertical profile temperature and salinity, sea surface temperature (SST), seas surface height (SSH), zonal (u), and meridional (v) velocity. We compared the model SST to satellite SST in time series, SSH to tides gauges data in time series, the model u and v component velocity to High Frequency (HF) radial velocity. The vertical profile temperature and salinity were compared to Argo float data and XBT. Besides, we validated the amplitude and phase of the ROMS seas surface height to amplitude and phase of the tides-gauges, including four constituents (M2, S2, K1, O1).</p>


Author(s):  
А.В. Кошелева ◽  
И.О. Ярощук ◽  
Ф.Ф. Храпченков ◽  
A. A. Pivovarov ◽  
А.Н. Самченко ◽  
...  

На основе инструментальных и спутниковых наблюдений рассматриваются характерные особенности локального апвеллинга, наблюдавшегося в октябре 2011 г. в юго-западной части залива Петра Великого Японского моря. Кроме того, приведены результаты численного моделирования, выполнявшегося при помощи Regional Ocean Model System (ROMS) со свободной поверхностью. При вычислениях использовались метеорологические наблюдения за неоднородностями поля ветра и инструментальные измерения гидрологической структуры воды. Анализ данных натурных измерений и их сравнение с результатами моделирования развития апвеллинга выявили, что пространственный и временной масштаб явления определялся силой, продолжительностью и направлением воздействующего ветра. Неоднородность поля скорости ветра, тесно связанная с особенностями береговой орографии, приводит к усилению апвеллинга у некоторых частей побережья и формированию температурных фронтов и струй холодной воды, поперечных основному течению, идущему вдоль шельфа.


2020 ◽  
Author(s):  
Mingkui Li ◽  
Shaoqing Zhang

<p>A regional coupled prediction system for the Asia-Pacific area (AP-RCP) has been established. The AP-RCP system consists of WRF-ROMS (Weather Research and Forecast and Regional Ocean Model System) coupled models combined with local observing information through dynamically downscaling coupled data assimilation. The system generates 18-day atmospheric and oceanic environment forecasts on a daily quasi-operational schedule at Qingdao Pilot National Laboratory for Marine Science and Technology (QNLM). The AP-RCP system mainly includes 2 different coupled model resolutions: 27km WRF coupled with 9km ROMS, and 9km WRF coupled with 3km ROMS. This study evaluates the impact of enhancing coupled model resolution on the extended-range forecasts, focusing on forecasts of typhoon onset, and improved precipitation and typhoon intensity forecasts. Results show that enhancing coupled model resolution is a necessary step to realize the extended-range predictability of the atmosphere and ocean environmental conditions that include a plenty of local details. The next challenges include improving the planetary boundary physics and the representation of air-sea and air-land interactions when the model can resolve the kilometer or sub-kilometer processes.</p>


2020 ◽  
Vol 37 (1) ◽  
pp. 141-157
Author(s):  
Pinqiang Wang ◽  
Weimin Zhang ◽  
Huizan Wang ◽  
Haijin Dai ◽  
Xiaohui Wang

AbstractPrevious studies are mainly limited to temperature and salinity (T/S) profiling data assimilation, while data assimilation based on Argo float trajectory information has received less research focus. In this study, a new method was proposed to assimilate Argo trajectory data: the middepth (indicates the parking depth of Argo floats in this study, ~1200 m) velocities are estimated from Argo trajectories and subsequently assimilated into the Regional Ocean Model System (ROMS) using four-dimensional variational data assimilation (4DVAR) method. This method can avoid a complicated float trajectory model in direct position assimilation. The 2-month assimilation experiments in South China Sea (SCS) showed that this proposed method can effectively assimilate Argo trajectory information into the model and improve middepth velocity field by adjusting the unbalanced component in the velocity increments. The assimilation of the Argo trajectory-derived middepth velocity with other observations (satellite observations and T/S profiling data) together yielded the best performance, and the velocity fields at the float parking depth are more consistent with the Argo float trajectories. In addition, this method will not decrease the assimilation performance of other observations [i.e., sea level anomaly (SLA), sea surface temperature (SST), and T/S profiles], which is indicative of compatibility with other observations in the 4DVAR assimilation system.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 210 ◽  
Author(s):  
Zhang ◽  
Wang ◽  
Jena ◽  
Paton-Walsh ◽  
Guérette ◽  
...  

Air-sea interactions play an important role in atmospheric circulation and boundary layer conditions through changing convection processes and surface heat fluxes, particularly in coastal areas. These changes can affect the concentrations, distributions, and lifetimes of atmospheric pollutants. In this Part II paper, the performance of the Weather Research and Forecasting model with chemistry (WRF/Chem) and the coupled WRF/Chem with the Regional Ocean Model System (ROMS) (WRF/Chem-ROMS) are intercompared for their applications over quadruple-nested domains in Australia during the three following field campaigns: The Sydney Particle Study Stages 1 and 2 (SPS1 and SPS2) and the Measurements of Urban, Marine, and Biogenic Air (MUMBA). The results are used to evaluate the impact of air-sea interaction representation in WRF/Chem-ROMS on model predictions. At 3, 9, and 27 km resolutions, compared to WRF/Chem, the explicit air-sea interactions in WRF/Chem-ROMS lead to substantial improvements in simulated sea-surface temperature (SST), latent heat fluxes (LHF), and sensible heat fluxes (SHF) over the ocean, in terms of statistics and spatial distributions, during all three field campaigns. The use of finer grid resolutions (3 or 9 km) effectively reduces the biases in these variables during SPS1 and SPS2 by WRF/Chem-ROMS, whereas it further increases these biases for WRF/Chem during all field campaigns. The large differences in SST, LHF, and SHF between the two models lead to different radiative, cloud, meteorological, and chemical predictions. WRF/Chem-ROMS generally performs better in terms of statistics and temporal variations for temperature and relative humidity at 2 m, wind speed and direction at 10 m, and precipitation. The percentage differences in simulated surface concentrations between the two models are mostly in the range of ±10% for CO, OH, and O3, ±25% for HCHO, ±30% for NO2, ±35% for H2O2, ±50% for SO2, ±60% for isoprene and terpenes, ±15% for PM2.5, and ±12% for PM10. WRF/Chem-ROMS at 3 km resolution slightly improves the statistical performance of many surface and column concentrations. WRF/Chem simulations with satellite-constrained boundary conditions (BCONs) improve the spatial distributions and magnitudes of column CO for all field campaigns and slightly improve those of the column NO2 for SPS1 and SPS2, column HCHO for SPS1 and MUMBA, and column O3 for SPS2 at 3 km over the Greater Sydney area. The satellite-constrained chemical BCONs reduce the model biases of surface CO, NO, and O3 predictions at 3 km for all field campaigns, surface PM2.5 predictions at 3 km for SPS1 and MUMBA, and surface PM10 predictions at all grid resolutions for all field campaigns. A more important role of chemical BCONs in the Southern Hemisphere, compared to that in the Northern Hemisphere reported in this work, indicates a crucial need in developing more realistic chemical BCONs for O3 in the relatively clean SH.


Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 72 ◽  
Author(s):  
Nguyen Thuy ◽  
Tran Tien ◽  
Cecilie Wettre ◽  
Lars Hole

In this study, monsoon-induced surge during high tides at the Southeast coast of Vietnam was analyzed based on the observed tide data at the Vung Tau station in the period between 1997—2016. Specifically, the surge was determined by removing the astronomical tide from the observed total water level. The two-dimensional Regional Ocean Model System (ROMS 2D) was applied to simulate the surge induced by monsoons during spring tide. The surge observations showed that the change of peak surge did not follow a clear trend, of either an increase or decrease, over time. A peak surge of over 40 cm appeared mainly in October and November, although the peak of the astronomical tide was higher in December. ROMS 2D was validated with the observational data, and the model could sufficiently reproduce the wind-induced surge during high tides. This study therefor ere commends for ROMS 2D to be used in operational forecasts in this area.


Ocean Science ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Laura Ràfols ◽  
Manel Grifoll ◽  
Manuel Espino

Abstract. Wave–current interactions (WCIs) are investigated. The study area is located at the northern margin of the Ebro shelf (northwestern Mediterranean Sea), where episodes of strong cross-shelf wind (wind jets) occur. The aim of this study is to validate the implemented coupled system and investigate the impact of WCIs on the hydrodynamics of a wind-jet region. The Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system, which uses the Regional Ocean Model System (ROMS) and Simulating WAves Nearshore (SWAN) models, is used in a high-resolution domain (350 m). Results from uncoupled numerical models are compared with a two-way coupling simulation. The results do not show substantial differences in the water current field between the coupled and the uncoupled runs. The main effect observed when the models are coupled is in the water column stratification, due to the turbulent kinetic energy injection and the enhanced surface stress, leading to a larger mixed-layer depth. Regarding the effects on the wave fields, the comparison between the coupled and the uncoupled runs shows that, when the models are coupled, the agreement of the modeled wave period significantly improves and the wave energy (and thus the significant wave height) decreases when the current flows in the same direction as the waves propagate.


Author(s):  
Zhenchang Zhang ◽  
Libin Gao ◽  
Minquan Guo ◽  
Riqing Chen

The 4D variational (4DVAR) assimilation numerical ocean model research is proposed. This model for Taiwan Straits (TWS) is based on Regional Ocean Model System (ROMS). The background of the 4DVAR method is introduced and the development process of assimilation system is presented. In the present research, the model assimilated with Sea Surface Temperature (SST) data of HY-2 satellite (Qi, 2012; Xu, 2013) which is the first marine environmental monitoring satellite of China. In this paper, the model processes from Feb. 1 to Feb. 7, 2014 with one-day assimilation time window and root mean square error (RMSE) reduces averagely by 14.7%.


Sign in / Sign up

Export Citation Format

Share Document