scholarly journals Satellite and Buoy Observations of Boreal Summer Intraseasonal Variability in the Tropical Northeast Pacific

2007 ◽  
Vol 135 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Eric D. Maloney ◽  
Steven K. Esbensen

Abstract Tropical intraseasonal variability in the eastern North Pacific during June–September of 2000–03 is analyzed using satellite and buoy observations. Quick Scatterometer ocean vector winds and the Tropical Rainfall Measuring Mission (TRMM) precipitation indicate that periods of anomalous surface westerly flow over the east Pacific warm pool during a summertime intraseasonal oscillation (ISO) life cycle are generally associated with an enhancement of convection to the east of 120°W. An exception is a narrow band of suppressed precipitation along 8°N that is associated with negative column-integrated precipitable water anomalies and anticyclonic vorticity anomalies. Periods of surface easterly anomalies are generally associated with suppressed convection to the east of 120°W. Summertime wind jets in the Gulfs of Tehuantepec and Papagayo exhibit heightened activity during periods of ISO easterly anomalies and suppressed convection. Strong variations in east Pacific warm pool wind speed occur in association with the summertime ISO. Anomalous ISO westerly flow is generally accompanied by enhanced wind speed to the east of 120°W, while anomalous easterly flow is associated with suppressed wind speed. Intraseasonal vector wind anomalies added to the climatological flow account for the bulk of the wind speed enhancement in the warm pool during the westerly phase, while the easterly phase shows strong contributions to the negative wind speed anomaly from both intraseasonal vector wind anomalies and suppressed synoptic-scale eddy activity. An analysis using Tropical Atmosphere Ocean buoys and TRMM precipitation suggests that wind–evaporation feedback is important for supporting summertime intraseasonal convection over the east Pacific warm pool. A statistically significant correlation of 0.6 between intraseasonal latent heat flux and precipitation occurs at the 12°N, 95°W buoy. Correlations between precipitation and latent heat flux at the 10°N, 95°W and 8°N, 95°W buoys are positive (0.4), but not statistically significant. Intraseasonal latent heat flux anomalies at all buoys are primarily wind induced. Consistent with the suppressed convection there during the ISO westerly phase, a negative but not statistically significant correlation (−0.3) occurs between precipitation and latent heat flux at the 8°N, 110°W buoy.

Author(s):  
Yunwei Yan ◽  
Lei Zhang ◽  
Xiangzhou Song ◽  
Guihua Wang ◽  
Changlin Chen

AbstractDiurnal variation in surface latent heat flux (LHF) and the effects of diurnal variations in LHF-related variables on the climatological LHF are examined using observations from the Global Tropical Moored Buoy Array. The estimated amplitude of the climatological diurnal LHF over the Indo-Pacific warm pool and the equatorial Pacific and Atlantic cold tongues is remarkable, with maximum values exceeding 20.0 W m−2. Diurnal variability of sea surface skin temperature (SSTskin) is the primary contributor to the diurnal LHF amplitude. Because the diurnal SSTskin amplitude has an inverse relationship with surface wind speed over the tropical oceans, an inverse spatial pattern between the diurnal LHF amplitude and surface wind speed results. Resolving diurnal variations in the SSTskin and wind improves the estimate of the climatological LHF by properly capturing the daytime SSTskin and daily mean wind speed, respectively. The diurnal SSTskin-associated contribution is large over the warm pool and equatorial cold tongues where low wind speeds tend to cause strong diurnal SSTskin warming, while the magnitude associated with the diurnal winds is large over the highly dynamic environment of the Inter-Tropical Convergence Zone. The total diurnal contribution is about 9.0 W m−2 on average over the buoy sites. There appears to be a power function (linear) relationship between the diurnal SSTskin-associated (wind-associated) contribution and surface mean wind speed (wind speed enhancement from diurnal variability). The total contribution from diurnal variability can be estimated accurately from high-frequency surface wind measurements using these relationships.


2005 ◽  
Vol 18 (4) ◽  
pp. 568-584 ◽  
Author(s):  
Eric D. Maloney ◽  
Steven K. Esbensen

Abstract Intraseasonal precipitation variability over the northeast Pacific warm pool during June–October in the National Center for Atmospheric Research Community Atmosphere Model 2.0.1 with a relaxed Arakawa–Schubert convection parameterization is found to be strongly sensitive to wind-induced variations in surface latent heat flux. A control simulation with interactive surface fluxes produces northeast Pacific warm pool intraseasonal wind and precipitation variations that are of similar magnitude and structure to those associated with the observed intraseasonal oscillation (ISO). Periods of low-level westerly intraseasonal wind anomalies are associated with enhanced surface latent heat fluxes and enhanced precipitation, as in observations. Variations in surface wind speed primarily control the surface flux anomalies. A simulation in which eastern North Pacific oceanic latent heat fluxes are fixed produces intraseasonal precipitation variations that are significantly weaker than those in the control simulation and in observations. These results support the observational findings of Maloney and Esbensen, who suggested that wind-induced latent heat flux variability is a significant driver of ISO-related convective variability over the northeast Pacific warm pool during Northern Hemisphere summer. East Pacific ISO-related convection in this model, thus, appears to be forced by an analogous wind-induced surface heat exchange mechanism to that proposed by Maloney and Sobel to explain the forcing of west Pacific ISO-related convection. The surface exchange mechanism is apparently active within regions of mean westerly low-level flow. In contrast, summertime eastern North Pacific intraseasonal wind variance and spatial structure does not differ significantly between the control and fixed-evaporation simulations. A strong coupling between the east Pacific flow and precipitation over Central America may be responsible for the relatively small changes in wind variability between the simulations. Interactions among the coarsely resolved Central American orography, the large-scale flow, and the convection parameterization in the model likely contribute to this anomalous coupling.


2009 ◽  
Vol 22 (3) ◽  
pp. 711-729 ◽  
Author(s):  
Eric D. Maloney

Abstract The intraseasonal moist static energy (MSE) budget is analyzed in a climate model that produces realistic eastward-propagating tropical intraseasonal wind and precipitation variability. Consistent with the recharge–discharge paradigm for tropical intraseasonal variability, a buildup of column-integrated MSE occurs within low-level easterly anomalies in advance of intraseasonal precipitation, and a discharge of MSE occurs during and after precipitation when westerly anomalies occur. The strongest MSE anomalies peak in the lower troposphere and are, primarily, regulated by specific humidity anomalies. The leading terms in the column-integrated intraseasonal MSE budget are horizontal advection and surface latent heat flux, where latent heat flux is dominated by the wind-driven component. Horizontal advection causes recharge (discharge) of MSE within regions of anomalous equatorial lower-tropospheric easterly (westerly) anomalies, with the meridional component of the moisture advection dominating the MSE budget near 850 hPa. Latent heat flux anomalies oppose the MSE tendency due to horizontal advection, making the recharge and discharge of column MSE more gradual than if horizontal advection were acting alone. This relationship has consequences for the time scale of intraseasonal variability in the model. Eddies dominate intraseasonal meridional moisture advection in the model. During periods of low-level intraseasonal easterly anomalies, eddy kinetic energy (EKE) is anomalously low due to a suppression of tropical synoptic-scale disturbances and other variability on time scales shorter than 20 days. Anomalous moistening of the equatorial lower troposphere occurs during intraseasonal easterly periods through suppression of eddy moisture advection between the equator and poleward latitudes. During intraseasonal westerly periods, EKE is enhanced, leading to anomalous drying of the equatorial lower troposphere through meridional advection. Given the importance of meridional moisture advection and wind-induced latent heat flux to the intraseasonal MSE budget, these findings suggest that to simulate realistic intraseasonal variability, climate models must have realistic basic-state distributions of lower-tropospheric zonal wind and specific humidity.


2021 ◽  
Author(s):  
Eric Maloney ◽  
Hien Bui ◽  
Emily Riley Dellaripa ◽  
Bohar Singh

<p>This study analyzes wind speed and surface latent heat flux anomalies from the Cyclone Global Navigation Satellite System (CYGNSS), aiming to understand the physical mechanisms regulating intraseasonal convection, particularly associated with the Madden-Julian oscillation (MJO). The importance of wind-driven surface flux variability for supporting east Pacific diurnal convective disturbances during boreal summer is also examined. An advantage of CYGNSS compared to other space-based datasets is that its surface wind speed retrievals have reduced attenuation by precipitation, thus providing improved information about the importance of wind-induced surface fluxes for the maintenance of convection. Consistent with previous studies from buoys, CYGNSS shows that enhanced MJO precipitation is associated with enhanced wind speeds, and that associated surface heat fluxes anomalies have a magnitude about 7%-12% of precipitation anomalies. Thus, latent heat flux anomalies are an important maintenance mechanism for MJO convection through the column moist static energy budget. A composite analysis during boreal summer over the eastern north Pacific also supports the idea that wind-induced surface flux is important for MJO maintenance there. We also show the surface fluxes help moisten the atmosphere in advance of diurnal convective disturbances that propagate offshore from the Colombian Coast during boreal summer, helping to sustain such convection.  </p>


2003 ◽  
Vol 16 (4) ◽  
pp. 637-656 ◽  
Author(s):  
Abderrahim Bentamy ◽  
Kristina B. Katsaros ◽  
Alberto M. Mestas-Nuñez ◽  
William M. Drennan ◽  
Evan B. Forde ◽  
...  

2011 ◽  
Vol 12 (4) ◽  
pp. 690-701 ◽  
Author(s):  
John L. Williams ◽  
Reed M. Maxwell

Abstract Feedbacks between the land surface and the atmosphere, manifested as mass and energy fluxes, are strongly correlated with soil moisture, making soil moisture an important factor in land–atmosphere interactions. It is shown that a reduction of the uncertainty in subsurface properties such as hydraulic conductivity (K) propagates into the atmosphere, resulting in a reduction in uncertainty in land–atmosphere feedbacks that yields more accurate atmospheric predictions. Using the fully coupled groundwater-to-atmosphere model ParFlow-WRF, which couples the hydrologic model ParFlow with the Weather Research and Forecasting (WRF) atmospheric model, responses in land–atmosphere feedbacks and wind patterns due to subsurface heterogeneity are simulated. Ensembles are generated by varying the spatial location of subsurface properties while maintaining the global statistics and correlation structure. This approach is common to the hydrologic sciences but uncommon in atmospheric simulations where ensemble forecasts are commonly generated with perturbed initial conditions or multiple model parameterizations. It is clearly shown that different realizations of K produce variation in soil moisture, latent heat flux, and wind for both point and domain-averaged quantities. Using a single random field to represent a control case, varying amounts of K data are sampled and subsurface data are incorporated into conditional Monte Carlo ensembles to show that the difference between the ensemble mean prediction and the control saturation, latent heat flux, and wind speed are reduced significantly via conditioning of K. By reducing uncertainty associated with land–atmosphere feedback mechanisms, uncertainty is also reduced in both spatially distributed and domain-averaged wind speed magnitudes, thus improving the ability to make more accurate forecasts, which is important for many applications such as wind energy.


2018 ◽  
Vol 57 (2) ◽  
pp. 421-434
Author(s):  
Marian E. Mateling ◽  
Matthew A. Lazzara ◽  
Linda M. Keller ◽  
George A. Weidner ◽  
John J. Cassano

AbstractBecause of the harsh weather conditions on the Antarctic continent, year-round observations of the low-level boundary layer must be obtained via automated data acquisition systems. Alexander Tall Tower! is an automatic weather station on the Ross Ice Shelf in Antarctica and has been operational since February 2011. At 30 m tall, this station has six levels of instruments to collect environmental data, including temperature, wind speed and direction, relative humidity, and pressure. Data are collected at 30-, 15-, 7.5-, 4-, 2-, and 1-m levels above the snow surface. This study identifies short-term trends and provides an improved description of the lowest portion of the boundary layer over this portion of the Ross Ice Shelf for the February 2011–January 2014 period. Observations indicate two separate initiations of the winter season occur annually, caused by synoptic-scale anomalies. Sensible and latent heat flux estimates are computed using Monin–Obukhov similarity theory and vertical profiles of potential air temperature and wind speed. Over the three years, the monthly mean sensible heat flux ranges between 1 and 39 W m−2 (toward the surface) and the monthly mean latent heat flux ranges between −8 and 0 W m−2. Net heat fluxes directed toward the surface occur most of the year, indicating an atmospheric sink of energy.


2017 ◽  
Vol 30 (16) ◽  
pp. 6351-6370 ◽  
Author(s):  
Samantha Ferrett ◽  
Matthew Collins ◽  
Hong-Li Ren

This study examines the extent of the Pacific double–intertropical convergence zone (ITCZ) bias in an ensemble of CMIP5 coupled general circulation models and the relationship between this common bias and equatorial Pacific evaporative heat flux feedbacks involved in El Niño–Southern Oscillation (ENSO). A feedback decomposition method, based on the latent heat flux bulk formula, is implemented to enable identification of underlying causes of feedback bias and diversity from dynamical and thermodynamical processes. The magnitude of mean precipitation south of the equator in the east Pacific (an indicator of the extent of the double-ITCZ bias in a model) is linked to the mean meridional surface wind speed and direction in the region and is consequently linked to diversity in the strength of the wind speed response during the ENSO cycle. The ENSO latent heat flux damping is weak in almost all models and shows a relatively large range in strength in the CMIP5 ensemble. While both humidity gradient and wind speed feedbacks are important drivers of the damping, the wind speed feedback is an underlying cause of the overall damping bias for many models and is ultimately more dominant in driving interensemble variation. Feedback biases can also persist in atmosphere-only (AMIP) runs, suggesting that the atmosphere model plays an important role in latent heat flux damping and double-ITCZ bias and variation. Improvements to coupled model simulation of both mean precipitation and ENSO may be accelerated by focusing on the atmosphere component.


2011 ◽  
Vol 11 (7) ◽  
pp. 3403-3416 ◽  
Author(s):  
N. A. Brunsell ◽  
D. B. Mechem ◽  
M. C. Anderson

Abstract. The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC) field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model (approximately 0.25, 1.2 and 9.5 times boundary layer height). The simulations exhibit little variation in net radiation. Rather, there is a pronounced change in the partitioning of the surface energy between sensible and latent heat flux. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The simulations showed approximately 50 Wm−2 difference in the spatially averaged latent heat flux. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to variations in surface heterogeneity than water vapor, which implies that the role of surface heterogeneity may be to maximize convective heat fluxes through modifying and maintaining local temperature gradients. More homogeneous surface conditions (i.e. smaller length scales), on the other hand, tend to maximize latent heat flux. The intermediate scale (1600 m) this does not hold, and is a more complicated interaction of scales. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier spectra of the vertical wind speed, air temperature and specific humidity (w~, T~ and q~) and associated cospectra (w~T~, w~q~ and T~q~), however, are insensitive to the length scale of surface heterogeneity, but the near surface spectra are sensitive to the mean wind speed.


2018 ◽  
Vol 31 (8) ◽  
pp. 2981-2993
Author(s):  
Chunlei Liu ◽  
Richard P. Allan

Abstract Tropical eastern Pacific sea surface temperature plays a pivotal role in mechanisms that determine global mean surface temperature variability. In this study, the surface flux contribution to recent cooling of the tropical eastern Pacific is investigated using data from three atmospheric reanalyses with full assimilation of observations, an observation-based net surface energy flux reconstruction, and 15 atmosphere-only climate model simulations. For ERA-Interim, 78% of the decrease in net surface flux (−0.65 W m−2 yr−1 over 1988–2008) is explained by the latent heat flux variability. Latent heat flux variability differs between datasets, and this is investigated using a bulk formula. It is found that discrepancies in wind speed change explain contrasting latent heat flux trends across datasets. The significant increase in wind speed of 0.26 m s−1 decade−1 over the tropical eastern Pacific in ERA-Interim is not reproduced by satellite or buoy observations or atmosphere-only climate model simulations, casting questions on the reliability of reanalysis-based surface fluxes over the tropical eastern Pacific.


Sign in / Sign up

Export Citation Format

Share Document