Wind Speed, Surface Flux, and Convection Coupling from CYGNSS Data

Author(s):  
Eric Maloney ◽  
Hien Bui ◽  
Emily Riley Dellaripa ◽  
Bohar Singh

<p>This study analyzes wind speed and surface latent heat flux anomalies from the Cyclone Global Navigation Satellite System (CYGNSS), aiming to understand the physical mechanisms regulating intraseasonal convection, particularly associated with the Madden-Julian oscillation (MJO). The importance of wind-driven surface flux variability for supporting east Pacific diurnal convective disturbances during boreal summer is also examined. An advantage of CYGNSS compared to other space-based datasets is that its surface wind speed retrievals have reduced attenuation by precipitation, thus providing improved information about the importance of wind-induced surface fluxes for the maintenance of convection. Consistent with previous studies from buoys, CYGNSS shows that enhanced MJO precipitation is associated with enhanced wind speeds, and that associated surface heat fluxes anomalies have a magnitude about 7%-12% of precipitation anomalies. Thus, latent heat flux anomalies are an important maintenance mechanism for MJO convection through the column moist static energy budget. A composite analysis during boreal summer over the eastern north Pacific also supports the idea that wind-induced surface flux is important for MJO maintenance there. We also show the surface fluxes help moisten the atmosphere in advance of diurnal convective disturbances that propagate offshore from the Colombian Coast during boreal summer, helping to sustain such convection.  </p>

Author(s):  
Yunwei Yan ◽  
Lei Zhang ◽  
Xiangzhou Song ◽  
Guihua Wang ◽  
Changlin Chen

AbstractDiurnal variation in surface latent heat flux (LHF) and the effects of diurnal variations in LHF-related variables on the climatological LHF are examined using observations from the Global Tropical Moored Buoy Array. The estimated amplitude of the climatological diurnal LHF over the Indo-Pacific warm pool and the equatorial Pacific and Atlantic cold tongues is remarkable, with maximum values exceeding 20.0 W m−2. Diurnal variability of sea surface skin temperature (SSTskin) is the primary contributor to the diurnal LHF amplitude. Because the diurnal SSTskin amplitude has an inverse relationship with surface wind speed over the tropical oceans, an inverse spatial pattern between the diurnal LHF amplitude and surface wind speed results. Resolving diurnal variations in the SSTskin and wind improves the estimate of the climatological LHF by properly capturing the daytime SSTskin and daily mean wind speed, respectively. The diurnal SSTskin-associated contribution is large over the warm pool and equatorial cold tongues where low wind speeds tend to cause strong diurnal SSTskin warming, while the magnitude associated with the diurnal winds is large over the highly dynamic environment of the Inter-Tropical Convergence Zone. The total diurnal contribution is about 9.0 W m−2 on average over the buoy sites. There appears to be a power function (linear) relationship between the diurnal SSTskin-associated (wind-associated) contribution and surface mean wind speed (wind speed enhancement from diurnal variability). The total contribution from diurnal variability can be estimated accurately from high-frequency surface wind measurements using these relationships.


2018 ◽  
Vol 31 (8) ◽  
pp. 2981-2993
Author(s):  
Chunlei Liu ◽  
Richard P. Allan

Abstract Tropical eastern Pacific sea surface temperature plays a pivotal role in mechanisms that determine global mean surface temperature variability. In this study, the surface flux contribution to recent cooling of the tropical eastern Pacific is investigated using data from three atmospheric reanalyses with full assimilation of observations, an observation-based net surface energy flux reconstruction, and 15 atmosphere-only climate model simulations. For ERA-Interim, 78% of the decrease in net surface flux (−0.65 W m−2 yr−1 over 1988–2008) is explained by the latent heat flux variability. Latent heat flux variability differs between datasets, and this is investigated using a bulk formula. It is found that discrepancies in wind speed change explain contrasting latent heat flux trends across datasets. The significant increase in wind speed of 0.26 m s−1 decade−1 over the tropical eastern Pacific in ERA-Interim is not reproduced by satellite or buoy observations or atmosphere-only climate model simulations, casting questions on the reliability of reanalysis-based surface fluxes over the tropical eastern Pacific.


2014 ◽  
Vol 27 (18) ◽  
pp. 7053-7068 ◽  
Author(s):  
Kaya Kanemaru ◽  
Hirohiko Masunaga

Abstract The current study is aimed at exploring the potential roles of the seasonally altering background surface wind in the seasonality of the intraseasonal oscillations (ISOs) with a focus on the sea surface temperature (SST) variability. A composite analysis of the ocean mixed layer heat budget in term of ISO phases with various satellite data is performed for boreal winter and summer. The scalar wind is found to be a dominant factor that accounts for the ocean surface heat budget, implying that the background surface wind as well as its anomaly is important for the SST variability. An easterly anomaly to the east of convection diminishes scalar wind, and thus latent heat flux, when superposed onto a background westerly wind, implying that the presence of basic westerly wind is important for the development of a warm SST anomaly ahead of the ISO convection. On the other hand, an easterly anomaly in combination with basic easterly wind magnifies scalar wind and latent heat flux and cancels out the shortwave heat flux anomaly. The seasonal migration of the background westerly wind, which is confined to a southern equatorial belt in boreal winter but spread across the northern Indian Ocean in boreal summer, may offer a mechanism that partly accounts for the seasonal characteristics of ISO propagation. The northward propagation of the SST variability associated with the boreal summer ISO is found to also involve a similar mechanism with the meridional wind modulation of scalar wind.


2008 ◽  
Vol 21 (22) ◽  
pp. 5925-5941 ◽  
Author(s):  
Erik Sahlée ◽  
Ann-Sofi Smedman ◽  
Anna Rutgersson ◽  
Ulf Högström

Abstract Recent research has found that boundary layer turbulence changes its organization as the stratification approaches neutral from the unstable side. When the thermal forcing weakens in combination with wind speed above approximately 10 m s−1, detached eddies are formed in the upper part of the surface layer. These eddies effectively transport drier and colder air from aloft to the surface as they move downward, thereby enhancing the surface fluxes of sensible and latent heat. This effect has been observed over both land and sea; that is, it is not dependent on the nature of the underlying surface. Here the authors perform a sensitivity study of how this reorganization of the turbulence structure influences the global air–sea heat fluxes. Using modified bulk formulations incorporating this effect, the magnitude of the enhancement in a climatic sense was estimated by the use of 40-yr ECMWF Re-Analysis (ERA-40) data in the bulk formulas. It is found that for the 1979–2001 period, the global increase of the latent and sensible heat fluxes over the ice-free oceans is 3.6 and 1.2 W m−2, respectively. These numbers suggest that this effect is of some significance. The results also indicate that the regional and seasonal variability may be large. The largest annual increases are found over the southern oceans between 30° and 60°S where the sensible heat flux increases by 2.3 W m−2 and the latent heat flux by 6.5 W m−2. Ocean areas close to the equator experience almost no increase, whereas the latent heat flux from the Arabian Sea during the monsoon period is enhanced by 11.5 W m−2.


2021 ◽  
Author(s):  
Yuqi Wang ◽  
Renguang Wu

AbstractSurface latent heat flux (LHF) is an important component in the heat exchange between the ocean and atmosphere over the tropical western North Pacific (WNP). The present study investigates the factors of seasonal mean LHF variations in boreal summer over the tropical WNP. Seasonal mean LHF is separated into two parts that are associated with low-frequency (> 90-day) and high-frequency (≤ 90-day) atmospheric variability, respectively. It is shown that low-frequency LHF variations are attributed to low-frequency surface wind and sea-air humidity difference, whereas high-frequency LHF variations are associated with both low-frequency surface wind speed and high-frequency wind intensity. A series of conceptual cases are constructed using different combinations of low- and high-frequency winds to inspect the respective effects of low-frequency wind and high-frequency wind amplitude to seasonal mean LHF variations. It is illustrated that high-frequency wind fluctuations contribute to seasonal high-frequency LHF only when their intensity exceeds the low-frequency wind speed under which there is seasonal accumulation of high-frequency LHF. When high-frequency wind intensity is smaller than the low-frequency wind speed, seasonal mean high-frequency LHF is negligible. Total seasonal mean LHF anomalies depend on relative contributions of low- and high-frequency atmospheric variations and have weak interannual variance over the tropical WNP due to cancellation of low- and high-frequency LHF anomalies.


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


2021 ◽  
Vol 60 (4) ◽  
pp. 527-541
Author(s):  
Juan A. Crespo ◽  
Catherine M. Naud ◽  
Derek J. Posselt

AbstractLatent and sensible heat fluxes over the oceans are believed to play an important role in the genesis and evolution of marine-based extratropical cyclones (ETCs) and affect rapid cyclogenesis. Observations of ocean surface heat fluxes are limited from existing in situ and remote sensing platforms, which may not offer sufficient spatial and temporal resolution. In addition, substantial precipitation frequently veils the ocean surface around ETCs, limiting the capacity of spaceborne instruments to observe the surface processes within maturing ETCs. Although designed as a tropics-focused mission, the Cyclone Global Navigation Satellite System (CYGNSS) can observe ocean surface wind speed and heat fluxes within a notable quantity of low-latitude extratropical fronts and cyclones. These observations can assist in understanding how surface processes may play a role in cyclogenesis and evolution. This paper illustrates CYGNSS’s capability to observe extratropical cyclones manifesting in various ocean basins throughout the globe and shows that the observations provide a robust sample of ETCs winds and surface fluxes, as compared with a reanalysis dataset.


2014 ◽  
Vol 14 (11) ◽  
pp. 5659-5677 ◽  
Author(s):  
Q. Shi ◽  
S. Liang

Abstract. Estimations from meteorological stations over the Tibetan Plateau (TP) indicate that since the 1980s the surface-sensible heat flux has been decreasing continuously, and modeling studies suggest that such changes are likely linked to the weakening of the East Asian Monsoon through exciting Rossby wave trains. However, the spatial and temporal variations in the surface-sensible and latent heat fluxes over the entire TP remain unknown. This study aims to characterize the spatial and seasonal variability of the surface-sensible and latent heat fluxes at 0.5° over the TP from 1984 to 2007 by synthesizing multiple data sources including ground measurements, reanalysis products, and remote-sensing products. The root mean square errors (RMSEs) from cross validation are 14.3 Wm−2 and 10.3 Wm−2 for the monthly fused sensible and latent heat fluxes, respectively. The fused sensible and latent heat-flux anomalies are consistent with those estimated from meteorological stations, and the uncertainties of the fused data are also discussed. The associations among the fused sensible and latent heat fluxes and the related surface anomalies such as mean temperature, temperature range, snow cover, and normalized difference vegetation index (NDVI) in addition to atmospheric anomalies such as cloud cover and water vapor show seasonal dependence, suggest that the land–biosphere–atmosphere interactions over the TP could display nonuniform feedbacks to the climate changes. It would be interesting to disentangle the drivers and responses of the surface-sensible and latent heat-flux anomalies over the TP in future research from evidences of modeling results.


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Yanping He

AbstractThe relationship between surface latent heat flux and the lower-tropospheric stability (LTS) is examined using ERA-40 reanalysis, NCEP reanalysis and COADS (Comprehensive Ocean-Atmosphere Data Set) ship data in two southern subtropical marine stratus and stratocumulus regions. The change of surface latent heat flux with LTS is determined by a comparison of the correlation of LTS with surface wind speed and with near surface humidity difference. At intermediate LTS (10 K-15 K), both surface evaporation and downward surface radiation flux amplify small LTS perturbations due to the surface wind-LTS relationship and cloud-radiation feedback. At high LTS, surface latent heat flux exceeds its peak value and becomes a regulating mechanism to keep LTS at its commonly observed equilibrium value. Surface radiation flux is seen to decrease at a smaller rate with LTS than surface latent heat flux. By applying the regulating effect of LTS on near surface humidity differences, monthly surface latent heat flux can be better represented.


2013 ◽  
Vol 17 (14) ◽  
pp. 1-22 ◽  
Author(s):  
Allison L. Steiner ◽  
Dori Mermelstein ◽  
Susan J. Cheng ◽  
Tracy E. Twine ◽  
Andrew Oliphant

Abstract Atmospheric aerosols scatter and potentially absorb incoming solar radiation, thereby reducing the total amount of radiation reaching the surface and increasing the fraction that is diffuse. The partitioning of incoming energy at the surface into sensible heat flux and latent heat flux is postulated to change with increasing aerosol concentrations, as an increase in diffuse light can reach greater portions of vegetated canopies. This can increase photosynthesis and transpiration rates in the lower canopy and potentially decrease the ratio of sensible to latent heat for the entire canopy. Here, half-hourly and hourly surface fluxes from six Flux Network (FLUXNET) sites in the coterminous United States are evaluated over the past decade (2000–08) in conjunction with satellite-derived aerosol optical depth (AOD) to determine if atmospheric aerosols systematically influence sensible and latent heat fluxes. Satellite-derived AOD is used to classify days as high or low AOD and establish the relationship between aerosol concentrations and the surface energy fluxes. High AOD reduces midday net radiation by 6%–65% coupled with a 9%–30% decrease in sensible and latent heat fluxes, although not all sites exhibit statistically significant changes. The partitioning between sensible and latent heat varies between ecosystems, with two sites showing a greater decrease in latent heat than sensible heat (Duke Forest and Walker Branch), two sites showing equivalent reductions (Harvard Forest and Bondville), and one site showing a greater decrease in sensible heat than latent heat (Morgan–Monroe). These results suggest that aerosols trigger an ecosystem-dependent response to surface flux partitioning, yet the environmental drivers for this response require further exploration.


Sign in / Sign up

Export Citation Format

Share Document