Evaluation of Boundary Layer Similarity Theory for Stable Conditions in CASES-99

2007 ◽  
Vol 135 (10) ◽  
pp. 3474-3483 ◽  
Author(s):  
Kyung-Ja Ha ◽  
Yu-Kyung Hyun ◽  
Hyun-Mi Oh ◽  
Kyung-Eak Kim ◽  
Larry Mahrt

Abstract The Monin–Obukhov similarity theory and a generalized formulation of the mixing length for the stable boundary layer are evaluated using the Cooperative Atmosphere–Surface Exchange Study-1999 (CASES-99) data. The large-scale wind forcing is classified into weak, intermediate, and strong winds. Although the stability parameter, z/L, is inversely dependent on the mean wind speed, the speed of the large-scale flow includes independent influences on the flux–gradient relationship. The dimensionless mean wind shear is found to obey existing stability functions when z/L is less than unity, particularly for the strong and intermediate wind classes. For weak mean winds and/or strong stability (z/L > 1), this similarity theory breaks down. Deviations from similarity theory are examined in terms of intermittency. A case study of a weak-wind night indicates important modulation of the turbulence flux by mesoscale motions of unknown origin.

2011 ◽  
Vol 68 (8) ◽  
pp. 1714-1729 ◽  
Author(s):  
Felipe D. Costa ◽  
Otávio C. Acevedo ◽  
José C. M. Mombach ◽  
Gervásio A. Degrazia

Abstract A model for the exchange between the surface and the atmosphere under stable conditions is proposed. It is based on the classical scheme first suggested by Blackadar and comprises prognostic equations for the wind components and air and ground temperature. The main difference from previous works consists in the fact that the turbulent intensity is determined by a prognostic equation for turbulent kinetic energy (TKE), rather than by using stability functions that arbitrarily relate it to atmospheric stability. Results show that the model reproduces the condition of connection and disconnection between the surface and upper levels. Furthermore, it leads to periodic turbulence bursts when one level within the stable boundary layer (SBL) is considered and the use of additional levels increasingly leads to more complex solutions, characterizing the occurrence of global intermittency. Such turbulence bursts occur in the disconnected state and cause large fluctuations of the variables near the surface. The boundary layer height plays a role in the sense that for the same geostrophic winds, connection is favored for shallower layers. Although playing a role in the intermittency characteristics, soil type is not determinant to their existence, as the bursts occur even for very high values of heat capacity. Vertical profiles for both the intermittent and connected state are analyzed and in general agree with observations. It is shown that, near the surface, weak turbulence bursts favor the exchange between the air and the cooler ground, leading to a local temperature decrease, while stronger events that mix the air deeper in the SBL cause an average warming tendency. An opposite pattern occurs at the upper SBL. Intermittency is favored over a range of low geostrophic winds and clear skies, in agreement with previous suggestions. The vertical structure of the intermittent events is analyzed, and it shown that they are generated at the surface by a local shear increase above a threshold, propagating upward through the turbulence transfer term in the TKE equation. It is proposed that such events constitute a natural characteristic of the disconnected SBL, which occurs along with low large-scale winds and clear skies.


2012 ◽  
Vol 69 (6) ◽  
pp. 1910-1915 ◽  
Author(s):  
Pramod Kumar ◽  
Maithili Sharan

Abstract An analysis in a plane of the stability parameters ζ = z/L (where z is a height above the ground surface and L is the Obukhov length) and bulk Richardson number RiB is proposed to examine the applicability of Monin–Obukhov similarity (MOS) theory in stable conditions. In this analysis, the data available from two different experimental datasets [(i) Cooperative Atmosphere–Surface Exchange Study-1999 (CASES-99) and (ii) Cardington] are divided into four quadrants. An unexpected behavior of decreasing ζ with increasing RiB was observed with both datasets in quadrant II characterized by ζ < 1 and RiB > 0.2 and in quadrant IV with ζ > 1 and RiB < 0.2. This is in contrast to a commonly expected monotonically increasing behavior between ζ and RiB. It is shown that the MOS theory is consistent for computing the surface fluxes corresponding to the data points lying in quadrants I (with ζ > 1 and RiB > 0.2) and III (with ζ < 1 and RiB < 0.2), whereas it may not be applicable for the points in quadrants II and IV. Thus, a breakdown of the relationship between observed ζ and RiB with growing stability in these quadrants may limit the applicability of MOS theory in stable conditions. Since quadrant IV has very few data points, the applicability of MOS theory needs to be substantiated further with the availability of sufficient data points in this regime.


2021 ◽  
Author(s):  
Andrey Debolskiy ◽  
Evgeny Mortikov ◽  
Andrey Glazunov ◽  
Christof Lüpkes

<p>According to the Monin-Obukhov similarity theory (MOST), in the stratified surface layer of the atmosphere, the mean vertical velocity and scalars gradients are related to the turbulent fluxes of these quantities and to the distance z from the surface in a universal manner. The stability parameter ζ=z/L, where L is the Obukhov turbulent length scale, is the only dimensionless parameter that determines the flux-gradient relationships. This imposes a dependency of the dimensionless velocity and buoyancy gradients on ζ in form of universal nondimensional stability functions for  the surface layer. Over the decades a number of them were proposed and derived mostly from extensive field campaigns of measurements in the ABL. The stability functions differ from each other by both open coefficients and functional dependence on  ζ.  They have a limited range of applicability, which is often extended by incorporating the assumption about their asymptotic behavior.</p><p>           A generalization of MOST by considering the dependence of the dimensionless gradients on the local stability parameter z/Λ  in the framework of first order closures allows the extension of  the universal stability functions from the surface layer to most of the ABL. However, because of applicability constraints, differences in the asymptotic behavior and in other implied assumptions, it is not immediately obvious, which set of stability functions will perform best. In this study we analyze a set of stability functions which are implemented in a uniform manner into a one-dimensional first-order closure.  The latter applies a turbulent mixing length with generalized local MOST scaling which fits to a surface schemes employing corresponding functions for consistency. We use two numerical experiment setups accompanied with LES data for validation which correspond to the weakly stable GABLES1 case and to LES simulations of the very stable ABL based on measurements at the Antarctic station DOME-C (van der Linden et al. 2019). We also focus on the sensitivity of the 1D model results to coarser grids with respect to both the used  surface flux schemes and  the ABL turbulence closures since their are meant to be used in climate models because of numerical efficiency.</p><p>Authors want to aknowledge partial funding by Russian Foundation for Basic Research (RFBR project N 20-05-00776), sensitivity analysis and closure development were performed with support  of Russian Science Foundation (RSF No 20-17-00190). Steven van der Linden for providing LES data of DOME-C based experiments.</p><p>References:</p><p>van der Linden S.J. et al. Large-Eddy Simulations of the Steady Wintertime Antarctic Boundary Layer // Boundary Layer Meteorology 173.2 (2019): 165-192.</p>


2009 ◽  
Vol 48 (7) ◽  
pp. 1377-1397 ◽  
Author(s):  
Valéry Masson ◽  
Yann Seity

Abstract A formulation to include prognostic atmospheric layers in offline surface schemes is derived from atmospheric equations. Whereas multilayer schemes developed previously need a complex coupling between atmospheric-model levels and surface-scheme levels, the coupling proposed here remains simple. This is possible because the atmospheric layers interacting with the surface scheme are independent of the atmospheric model that could be coupled above. The surface boundary layer (SBL; both inside and just above the canopy) is resolved prognostically, taking into account large-scale forcing, turbulence, and, if any, drag and canopy forces and surface fluxes. This formulation allows one to retrieve the logarithmic law in neutral conditions, and it has been validated when coupled to a 3D atmospheric model. Systematic comparisons with 2-m observations and 10-m wind have been made for 2 months. The SBL scheme is able to model the 2-m temperature accurately, as well as the 10-m wind, without any use of analytical interpolation. The largest improvement takes place during stable conditions (i.e., by night), during which analytical laws and interpolation methods are known to be less accurate, and in mountainous areas, in which nocturnal low-level flow is strongly influenced by surface cooling. The prognostic SBL scheme is shown to solve the nighttime physical disconnection problem between surface and atmosphere models. The inclusion of the SBL into the urban Town Energy Balance scheme is presented in a paper by Hamdi and Masson in which the ability of the method to simulate the profiles of both mean and turbulent quantities from above the building down to the road surface is shown using data from the Basel Urban Boundary Layer Experiment (BUBBLE). The proposed method will allow the inclusion of the detailed physics of the multilayer schemes (e.g., the interactions of the SBL flow with forest or urban canopy) into a single-layer scheme that is easily coupled with atmospheric models.


2006 ◽  
Vol 63 (11) ◽  
pp. 2700-2719 ◽  
Author(s):  
Robert M. Banta ◽  
Yelena L. Pichugina ◽  
W. Alan Brewer

Abstract Profiles of mean winds and turbulence were measured by the High Resolution Doppler lidar in the strong-wind stable boundary layer (SBL) with continuous turbulence. The turbulence quantity measured was the variance of the streamwise wind velocity component σ2u. This variance is a component of the turbulence kinetic energy (TKE), and it is shown to be numerically approximately equal to TKE for stable conditions—profiles of σ2u are therefore equivalent to profiles of TKE. Mean-wind profiles showed low-level jet (LLJ) structure for most of the profiles, which represented 10-min averages of mean and fluctuating quantities throughout each of the six nights studied. Heights were normalized by the height of the first LLJ maximum above the surface ZX, and the velocity scale used was the speed of the jet UX, which is shown to be superior to the friction velocity u* as a velocity scale. The major results were 1) the ratio of the maximum value of the streamwise standard deviation to the LLJ speed σu/UX was found to be 0.05, and 2) the three most common σ2u profile shapes were determined by stability (or Richardson number Ri). The least stable profile shapes had the maximum σ2u at the surface decreasing to a minimum at the height of the LLJ; profiles that were somewhat more stable had constant σ2u through a portion of the subjet layer; and the most stable of the profiles had a maximum of σ2u aloft, although it is important to note that the Ri for even the most stable of the three profile categories averaged less than 0.20. The datasets used in this study were two nights from the Cooperative Atmosphere–Surface Exchange Study 1999 campaign (CASES-99) and four nights from the Lamar Low-Level Jet Project, a wind-energy experiment in southeast Colorado, during September 2003.


2018 ◽  
Vol 48 (4) ◽  
pp. 925-936 ◽  
Author(s):  
Zhongshui Zou ◽  
Dongliang Zhao ◽  
Jun A. Zhang ◽  
Shuiqing Li ◽  
Yinhe Cheng ◽  
...  

AbstractThe anomalous phenomena induced by the prevailing swell at low wind speeds prevent a complete understanding of air–sea interaction processes. Many studies have considered this complex problem, but most have focused on near-neutral conditions. In this study, the influence of the swell on the atmospheric boundary under nonneutral conditions was addressed by extending the turbulent closure models of Makin and Kudryavtsev and the Monin–Obukhov similarity theory (MOST; Monin and Yaglom) to the existence of swell and nonneutral conditions. It was shown that wind profiles derived from these models were consistent with each other and both departed from the traditional MOST. At low wind speeds, a supergeostrophic jet appeared on the upper edge of the wave boundary layer, which was also reported in earlier studies. Under nonneutral conditions, the influence of buoyancy was significant. The slope of the wind profile increased under stable conditions and became smoother under unstable conditions. Considering the effects of buoyancy and swell, the wind stress derived from the model agreed quantitatively with the observations.


2011 ◽  
Vol 50 (10) ◽  
pp. 2030-2041 ◽  
Author(s):  
Jielun Sun

AbstractAn investigation on vertical variations of the mixing lengths for momentum and heat under neutral and stable conditions was conducted using the data collected from the Cooperative Atmosphere–Surface Exchange Study in 1999 (CASES-99). By comparing κz with the mixing lengths under neutral conditions calculated using the observations from CASES-99, the vertical layer where the Monin–Obukhov similarity theory (MOST) is valid was identified. Here κ is the von Kármán constant and z is the height above the ground. On average, MOST is approximately valid between 0.5 and 10 m. Above the layer, the observed mixing lengths under neutral conditions are smaller than the MOST κz and can be approximately described by Blackadar’s mixing length, κz/[1 + (κz/l∞)], with l∞ = 15 m for up to z ~ 20 m for the mixing length for momentum and up to the highest observation height for the mixing length for heat. Above ~20 m, the mixing length for momentum approaches a constant. Both MOST κz and Blackadar’s formula systematically overestimate the mixing length for momentum above ~20 m, leading to overestimates of turbulence.


Author(s):  
Maithili Sharan ◽  
Pramod Kumar

The computation of surface fluxes by Monin–Obukhov similarity theory with different linear/non-linear similarity functions for non-dimensional wind and temperature profiles becomes limited to specific ranges of ζ = z / L (where z is the height above ground and L is the Obukhov length) and bulk Richardson number ( Ri B ) under very stable conditions. A systematic mathematical analysis is carried out to estimate the upper bounds of ζ and Ri B for the extent of applicability of different non-linear similarity functions in the surface layer under these conditions. A generalized methodology is proposed on the basis of momentum drag coefficient ( C D ) and heat exchange coefficient ( C H ) and applied to various non-linear similarity functions available in the literature. A theoretically derived criterion for the applicability of each of the non-linear similarity function is evaluated with observations from Cooperative Atmosphere-Surface Exchange Study-99 and UK Meteorological Office’s Cardington datasets. The evaluation with both datasets for each non-linear similarity function confirms the validity of proposed theoretical results under very stable conditions.


2018 ◽  
Vol 18 (9) ◽  
pp. 6771-6783 ◽  
Author(s):  
Zhiheng Liao ◽  
Jiaren Sun ◽  
Jialin Yao ◽  
Li Liu ◽  
Haowen Li ◽  
...  

Abstract. Self-organizing maps (SOMs; a feature-extracting technique based on an unsupervised machine learning algorithm) are used to classify atmospheric boundary layer (ABL) meteorology over Beijing through detecting topological relationships among the 5-year (2013–2017) radiosonde-based virtual potential temperature profiles. The classified ABL types are then examined in relation to near-surface pollutant concentrations to understand the modulation effects of the changing ABL meteorology on Beijing's air quality. Nine ABL types (i.e., SOM nodes) are obtained through the SOM classification technique, and each is characterized by distinct dynamic and thermodynamic conditions. In general, the self-organized ABL types are able to distinguish between high and low loadings of near-surface pollutants. The average concentrations of PM2.5, NO2 and CO dramatically increased from the near neutral (i.e., Node 1) to strong stable conditions (i.e., Node 9) during all seasons except for summer. Since extremely strong stability can isolate the near-surface observations from the influence of elevated SO2 pollution layers, the highest average SO2 concentrations are typically observed in Node 3 (a layer with strong stability in the upper ABL) rather than Node 9. In contrast, near-surface O3 shows an opposite dependence on atmospheric stability, with the lowest average concentration in Node 9. Analysis of three typical pollution months (i.e., January 2013, December 2015 and December 2016) suggests that the ABL types are the primary drivers of day-to-day variations in Beijing's air quality. Assuming a fixed relationship between ABL type and PM2.5 loading for different years, the relative (absolute) contributions of the ABL anomaly to elevated PM2.5 levels are estimated to be 58.3 % (44.4 µg m−3) in January 2013, 46.4 % (22.2 µg m−3) in December 2015 and 73.3 % (34.6 µg m−3) in December 2016.


2016 ◽  
Vol 73 (11) ◽  
pp. 4253-4268 ◽  
Author(s):  
Jianjun Liu ◽  
Zhanqing Li ◽  
Maureen Cribb

Abstract This study investigates the response of marine boundary layer (MBL) cloud properties to aerosol loading by accounting for the contributions of large-scale dynamic and thermodynamic conditions and quantifies the first indirect effect (FIE). It makes use of 19-month measurements of aerosols, clouds, and meteorology acquired during the Atmospheric Radiation Measurement Mobile Facility field campaign over the Azores. Cloud droplet number concentrations and cloud optical depth (COD) significantly increased with increasing aerosol number concentration . Cloud droplet effective radius (DER) significantly decreased with increasing . The correlations between cloud microphysical properties [, liquid water path (LWP), and DER] and were stronger under more stable conditions. The correlations between , LWP, DER, and were stronger under ascending-motion conditions, while the correlation between COD and was stronger under descending-motion conditions. The magnitude and corresponding uncertainty of the FIE ranged from 0.060 ± 0.022 to 0.101 ± 0.006 depending on the different LWP values. Under more stable conditions, cloud-base heights were generally lower than those under less stable conditions. This enabled a more effective interaction with aerosols, resulting in a larger value for the FIE. However, the dependence of the response of cloud properties to aerosol perturbations on stability varied according to whether ground- or satellite-based DER retrievals were used. The magnitude of the FIE had a larger variation with changing LWP under ascending-motion conditions and tended to be higher under ascending-motion conditions for clouds with low LWP and under descending-motion conditions for clouds with high LWP. A contrasting dependence of FIE on atmospheric stability estimated from the surface and satellite cloud properties retrievals reported in this study underscores the importance of assessing all-level properties of clouds in aerosol–cloud interaction studies.


Sign in / Sign up

Export Citation Format

Share Document