Evaluating turbulent length scales from local MOST extension with different stability functions in first order closures for stably stratified boundary layer

Author(s):  
Andrey Debolskiy ◽  
Evgeny Mortikov ◽  
Andrey Glazunov ◽  
Christof Lüpkes

<p>According to the Monin-Obukhov similarity theory (MOST), in the stratified surface layer of the atmosphere, the mean vertical velocity and scalars gradients are related to the turbulent fluxes of these quantities and to the distance z from the surface in a universal manner. The stability parameter ζ=z/L, where L is the Obukhov turbulent length scale, is the only dimensionless parameter that determines the flux-gradient relationships. This imposes a dependency of the dimensionless velocity and buoyancy gradients on ζ in form of universal nondimensional stability functions for  the surface layer. Over the decades a number of them were proposed and derived mostly from extensive field campaigns of measurements in the ABL. The stability functions differ from each other by both open coefficients and functional dependence on  ζ.  They have a limited range of applicability, which is often extended by incorporating the assumption about their asymptotic behavior.</p><p>           A generalization of MOST by considering the dependence of the dimensionless gradients on the local stability parameter z/Λ  in the framework of first order closures allows the extension of  the universal stability functions from the surface layer to most of the ABL. However, because of applicability constraints, differences in the asymptotic behavior and in other implied assumptions, it is not immediately obvious, which set of stability functions will perform best. In this study we analyze a set of stability functions which are implemented in a uniform manner into a one-dimensional first-order closure.  The latter applies a turbulent mixing length with generalized local MOST scaling which fits to a surface schemes employing corresponding functions for consistency. We use two numerical experiment setups accompanied with LES data for validation which correspond to the weakly stable GABLES1 case and to LES simulations of the very stable ABL based on measurements at the Antarctic station DOME-C (van der Linden et al. 2019). We also focus on the sensitivity of the 1D model results to coarser grids with respect to both the used  surface flux schemes and  the ABL turbulence closures since their are meant to be used in climate models because of numerical efficiency.</p><p>Authors want to aknowledge partial funding by Russian Foundation for Basic Research (RFBR project N 20-05-00776), sensitivity analysis and closure development were performed with support  of Russian Science Foundation (RSF No 20-17-00190). Steven van der Linden for providing LES data of DOME-C based experiments.</p><p>References:</p><p>van der Linden S.J. et al. Large-Eddy Simulations of the Steady Wintertime Antarctic Boundary Layer // Boundary Layer Meteorology 173.2 (2019): 165-192.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Evan A. Kalina ◽  
Mrinal K. Biswas ◽  
Jun A. Zhang ◽  
Kathryn M. Newman

The intensity and structure of simulated tropical cyclones (TCs) are known to be sensitive to the planetary boundary layer (PBL) parameterization in numerical weather prediction models. In this paper, we use an idealized version of the Hurricane Weather Research and Forecast system (HWRF) with constant sea-surface temperature (SST) to examine how the configuration of the PBL scheme used in the operational HWRF affects TC intensity change (including rapid intensification) and structure. The configuration changes explored in this study include disabling non-local vertical mixing, changing the coefficients in the stability functions for momentum and heat, and directly modifying the Prandtl number (Pr), which controls the ratio of momentum to heat and moisture exchange in the PBL. Relative to the control simulation, disabling non-local mixing produced a ~15% larger storm that intensified more gradually, while changing the coefficient values used in the stability functions had little effect. Varying Pr within the PBL had the greatest impact, with the largest Pr (~1.6 versus ~0.8) associated with more rapid intensification (~38 versus 29 m s−1 per day) but a 5–10 m s−1 weaker intensity after the initial period of strengthening. This seemingly paradoxical result is likely due to a decrease in the radius of maximum wind (~15 versus 20 km), but smaller enthalpy fluxes, in simulated storms with larger Pr. These results underscore the importance of measuring the vertical eddy diffusivities of momentum, heat, and moisture under high-wind, open-ocean conditions to reduce uncertainty in Pr in the TC PBL.



2007 ◽  
Vol 135 (10) ◽  
pp. 3474-3483 ◽  
Author(s):  
Kyung-Ja Ha ◽  
Yu-Kyung Hyun ◽  
Hyun-Mi Oh ◽  
Kyung-Eak Kim ◽  
Larry Mahrt

Abstract The Monin–Obukhov similarity theory and a generalized formulation of the mixing length for the stable boundary layer are evaluated using the Cooperative Atmosphere–Surface Exchange Study-1999 (CASES-99) data. The large-scale wind forcing is classified into weak, intermediate, and strong winds. Although the stability parameter, z/L, is inversely dependent on the mean wind speed, the speed of the large-scale flow includes independent influences on the flux–gradient relationship. The dimensionless mean wind shear is found to obey existing stability functions when z/L is less than unity, particularly for the strong and intermediate wind classes. For weak mean winds and/or strong stability (z/L > 1), this similarity theory breaks down. Deviations from similarity theory are examined in terms of intermittency. A case study of a weak-wind night indicates important modulation of the turbulence flux by mesoscale motions of unknown origin.



2019 ◽  
Vol 874 ◽  
pp. 158-184 ◽  
Author(s):  
Paul M. Branson ◽  
Marco Ghisalberti ◽  
Gregory N. Ivey ◽  
Emil J. Hopfinger

Topographic complexity on continental shelves is the catalyst that transforms the barotropic tide into the secondary and residual circulations that dominate vertical and cross-shelf mixing processes. Island wakes are one such example that are observed to significantly influence the transport and distribution of biological and physical scalars. Despite the importance of island wakes, to date, no sufficient, mechanistic description of the physical processes governing their development exists for the general case of unsteady tidal forcing. Controlled laboratory experiments are necessary for the understanding of this complex flow phenomenon. Here, three-dimensional velocity field measurements of cylinder wakes in shallow-water oscillatory flow are conducted across a parameter space that is typical of tidal flow around shallow islands. The wake form in steady flows is typically described in terms of the stability parameter $S=c_{f}D/h$ (where $D$ is the island diameter, $h$ is the water depth and $c_{f}$ is the bottom boundary friction coefficient); in tidal flows, there is an additional dependence on the Keulegan–Carpenter number $KC=U_{0}T/D$ (where $U_{0}$ is the tidal velocity amplitude and $T$ is the tidal period). In this study we demonstrate that when the influence of bottom friction is confined to a Stokes boundary layer the stability parameter is given by $S=\unicode[STIX]{x1D6FF}^{+}/KC$ where $\unicode[STIX]{x1D6FF}^{+}$ is the ratio of the wavelength of the Stokes bottom boundary layer to the depth. Three classes of wake form are observed with decreasing wake stability: (i) steady bubble for $S\gtrsim 0.1$; (ii) unsteady bubble for $0.06\lesssim S\lesssim 0.1$; and (iii) vortex shedding for $S\lesssim 0.06$. Transitions in wake form and wake stability are shown to depend on the magnitude and temporal evolution of the wake return flow. Scaling laws are developed to allow upscaling of the laboratory results to island wakes. Vertical and lateral transport depend on three parameters: (i) the flow aspect ratio $h/D$; (ii) the amplitude of tidal motion relative to the island size, given by $KC$; and (iii) the relative influence of bottom friction to the flow depth, given by $\unicode[STIX]{x1D6FF}^{+}$. A model of wake upwelling based on Ekman pumping from the bottom boundary layer demonstrates that upwelling in the near-wake region of an island scales with $U_{0}(h/D)KC^{1/6}$ and is independent of the wake form. Finally, we demonstrate an intrinsic link between the dynamical eddy scales, predicted by the Ekman pumping model, and the island wake form and stability.



2016 ◽  
Vol 73 (11) ◽  
pp. 4519-4529 ◽  
Author(s):  
Maithili Sharan ◽  
Piyush Srivastava

Abstract The behavior of the heat flux H with respect to the stability parameter (=z/L, where z is the height above the ground, and L is the Obukhov length) in the unstable atmospheric surface layer is analyzed within the framework of Monin–Obukhov similarity (MOS) theory. Using MOS equations, H is expressed as a function of and vertical surface-layer potential temperature gradient . A mathematical analysis is carried out to analyze the theoretical nature of heat flux with the stability parameter by considering the vertical potential temperature gradient as (i) a constant and (ii) a power-law function of heat flux. For a given value of H, two values of associated with different stability regimes are found to occur in both the conditions, suggesting the nonuniqueness of MOS equations. Turbulent data over three different sites—(i) Ranchi, India; (ii) the Met Office’s Cardington, United Kingdom, monitoring facility; and (iii) 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99; United States—are analyzed to compare the observed nature of H with that predicted by MOS. The analysis of observational data over these three sites reveals that the observed variation of H with is consistent with that obtained theoretically from MOS equations when considering the vertical temperature gradient as a power-law function of heat flux having the exponent larger than 2/3. The existence of two different values of the stability parameter for a given value of heat flux suggests that the application of heat flux as a boundary condition involves some intricacies, and it should be applied with caution in convective conditions.



Author(s):  
K Harikumar ◽  
Titas Bera ◽  
Rajarshi Bardhan ◽  
Suresh Sundaram

This article addresses the problem of estimating the position, velocity, and acceleration of a manoeuvring target from noisy position measurements. A discrete-time sliding mode observer is designed to handle unmeasured disturbance input and measurement noise. A first-order linear dynamics is considered for target acceleration. The acceleration input command and the pole of the first-order acceleration dynamics are considered to be unknown parameters with known upper bounds. A finite non-zero boundary layer is employed to reduce the chattering phenomenon typically associated with sliding mode observers. Analysis of estimation error dynamics is presented for the case where the discrete-time sliding mode observer is operating outside the boundary layer and also within the boundary layer. An algorithm is developed for obtaining the observer gain vector that guarantees the stability of the error dynamics. Numerical simulations and experimental results are presented to validate the stability and performance of the proposed observer.



1992 ◽  
Vol 61 (1-2) ◽  
pp. 65-80 ◽  
Author(s):  
Michiaki Sugita ◽  
Wilfried Brutsaert


2018 ◽  
Vol 75 (10) ◽  
pp. 3381-3402 ◽  
Author(s):  
Ivan Bašták Ďurán ◽  
Jean-François Geleyn ◽  
Filip Váňa ◽  
Juerg Schmidli ◽  
Radmila Brožková

A new turbulence scheme with two prognostic energies is presented. The scheme is an extension of a turbulence kinetic energy (TKE) scheme following the ideas of Zilitinkevich et al. but valid for the whole stability range and including the influence of moisture. The second turbulence prognostic energy is used only for a modification of the stability parameter. Thus, the scheme is downgradient, and the turbulent fluxes are proportional to the local gradients of the diffused variables. However, the stability parameter and consequently the turbulent exchange coefficients are not strictly local anymore and have a prognostic character. The authors believe that these characteristics enable the scheme to model both turbulence and clouds in the planetary boundary layer. The two-energy scheme was tested in three idealized single-column model (SCM) simulations, two in the convective boundary layer and one in the stable boundary layer. Overall, the scheme performs better than the standard TKE schemes. Compared to the TKE schemes, the two-energy scheme shows a more continuous behavior in time and space and mixes deeper in accordance with the LES results. A drawback of the scheme is that the modeled thermals tend to be too intense and too infrequent. This is due to the particular cutoff formulation of the chosen length-scale parameterization. Long-term three-dimensional global simulations show that the turbulence scheme behaves reasonable well in a full atmospheric model. In agreement with the SCM simulations, the scheme tends to overestimate cloud cover, especially at low levels.



TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.





Sign in / Sign up

Export Citation Format

Share Document