Reinnervation of the Canine Posterior Cricoarytenoid Muscle with Sympathetic Preganglionic Neurons

1990 ◽  
Vol 99 (3) ◽  
pp. 167-174 ◽  
Author(s):  
Ian N. Jacobs ◽  
Bei-Lian Wu ◽  
Ira Sanders ◽  
Hugh F. Biller

This experiment investigated the reinnervation of the canine posterior cricoarytenoid (PCA) muscle with preganglionic neurons of the sympathetic nervous system. Six dogs had their right recurrent laryngeal nerve (RLN) sectioned. Four of these dogs had the sympathetic cervical trunk (SCT) implanted into the right PCA muscle, and the two remaining dogs served as denervated controls. Four months later all dogs underwent videolaryngoscopy, electromyography, and electrical stimulation of the SCT. The PCA muscles were excised, sectioned, and stained for glycogen and ATPase. All four experimental PCA muscles demonstrated electrically evoked abduction and tonic electromyographic activity. In two of the specimens, staining (ATPase and PAS) revealed areas of reinnervation with fiber type grouping and glycogen depletion. These results are consistent with the successful reinnervation of the PCA muscle. Further refinement of this technique could be of benefit to patients with bilateral vocal cord paralysis.

1989 ◽  
Vol 98 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Roger L. Crumley

Basic research and surgical cases have shown that the injured recurrent laryngeal nerve (RLN) may regenerate axons to the larynx that inappropriately innervate both vocal cord adductors and abductors. Innervation of vocal cord adductor muscles by those axons that depolarize during inspiration is particularly devastating to laryngeal function, since it produces medial vocal cord movement during inspiration. Many patients thought to have clinical bilateral vocal cord paralysis can be found to have synkinesis on at least one side. This will make the glottic airway smaller, particularly during inspiration, than would true paralysis of all the intrinsic laryngeal muscles. Patients with bilateral vocal cord paralysis should undergo laryngeal electromyography. If inspiratory innervation of the adductor muscles is present, simple reinnervation of the posterior cricoarytenoid muscle will fail. The adductor muscles also must be denervated by transection of the adductor division of the regenerated RLN.


1989 ◽  
Vol 100 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Jonathan E. Aviv ◽  
Ira Sanders ◽  
David Silva ◽  
Warren M. Kraus ◽  
Bei-Lian Wu ◽  
...  

The intent of this study was to demonstrate that the technique of transmucosal electrical stimulation of laryngeal muscles may be of clinical use in airway management. Specifically, its ability to overcome laryngospasm was evaluated. Laryngospasm was induced in eight tracheotomized dogs by hyperventilating each dog, and then applying 0.1 M ammonia to the laryngeal mucosa while administering continuous positive airway pressure (CPAP). Laryngospasm was defined by steady apposition of the vocal cords, massive electromyographic activity in the laryngeal adductor muscles, absence of such activity in the posterior cricoarytenoid muscle (PCA), and intraglottic pressure greater than 80 mm Hg. Upon transmucosal application of 10 mAmp current to the PCA bilaterally, the vocal cords abducted for the duration of the stimulus. We theorize that overcoming laryngospasm by electrostimulation involves a reflexive inhibition of the laryngeal adductors. This study provides an objective model for laryngospasm, and demonstrates that electrical manipulation of the vocal cords may have clinical relevance.


1982 ◽  
Vol 91 (4) ◽  
pp. 440-444 ◽  
Author(s):  
Harvey M. Tucker

The procedure for reinnervation of bilateral vocal cord paralysis using nerve-muscle pedicle technique has now been well established in the literature. Moreover, several other centers have reported success using this technique. Nevertheless, the author is aware that a significant number of well trained otolaryngology-head and neck surgery practitioners have found difficulty in making the procedure successful in their hands. It therefore seems appropriate to address those aspects of patient evaluation, technique and postoperative follow-up that have brought a satisfactory level of success in the author's hands. Preoperative evaluation of patients is the cornerstone of success in nerve-muscle pedicle reinnervation. It is imperative that the larynx be properly evaluated to be certain that there does not exist fixation or ankylosis of one or both arytenoids in addition to paralysis. Clearly if such fixation exists, nerve-muscle pedicle reinnervation cannot be successful. Several pertinent aspects of technique with special reference to the identification of the proper nerve-muscle pedicle, the design of the pedicle and proper identification of the posterior cricoarytenoid muscle will be discussed. Postoperative evaluation of patients may be difficult for inexperienced operators. The author has seen at least three patients who were operated on by other surgeons who were referred because of “failure” of the procedure only to find that all three of them were successfully reinnervated with satisfactory motion of the reinnervated cord for reasonable day-to-day activity. All aspects of postoperative evaluation and management will be discussed as well.


1989 ◽  
Vol 66 (3) ◽  
pp. 1501-1505 ◽  
Author(s):  
G. Insalaco ◽  
G. Sant'Ambrogio ◽  
F. B. Sant'Ambrogio ◽  
S. T. Kuna ◽  
O. P. Mathew

Esophageal electrodes have been used for recording the electromyographic (EMG) activity of the posterior cricoarytenoid muscle (PCA). To determine the specificity of this EMG technique, esophageal electrode recordings were compared with intramuscular recordings in eight anesthetized mongrel dogs. Intramuscular wire electrodes were placed in the right and left PCA, and the esophageal electrode was introduced through the nose or mouth and advanced into the upper esophagus. On direct visualization of the upper airway, the unshielded catheter electrode entered the esophagus on the right or left side. Cold block of the recurrent laryngeal nerve (RLN) ipsilateral to the esophageal electrode was associated with a marked decrease in recorded activity, whereas cold block of the contralateral RLN resulted only in a small reduction in activity. After supplemental doses of anesthesia were administered, bilateral RLN cold block essentially abolished the activity recorded with the intramuscular electrodes as well as that recorded with the esophageal electrode. Before supplemental doses of anesthesia were given, especially after vagotomy, the esophageal electrode, and in some cases the intramuscular electrodes, recorded phasic inspiratory activity not originating from the PCA. Therefore, one should be cautious in interpreting the activity recorded from esophageal electrodes as originating from the PCA, especially in conditions associated with increased respiratory efforts.


1996 ◽  
Vol 105 (9) ◽  
pp. 689-693 ◽  
Author(s):  
Cheryl L. Rainey ◽  
Garrett D. Herzon ◽  
David L. Zealear ◽  
James L. Netterville ◽  
Robert H. Ossoff

This study represents the first attempt to electrically pace the paralyzed human larynx. The goal was to determine if electrical stimulation of the posterior cricoarytenoid muscle could produce functional abduction of the vocal fold in pace with inspiration. An external apparatus was used to sense inspiration and reanimate the unilaterally paralyzed larynx of a thyroplasty patient. Stimuli were delivered through a needle electrode to locate and pace the abductor muscle. The magnitude of electrically induced abduction was comparable to spontaneous movement on the normal side. The abduction was appropriately timed with inspiration; this finding demonstrated that this simple pacing system could effectively modulate stimulation with patient respiration.


2005 ◽  
Vol 114 (6) ◽  
pp. 478-487 ◽  
Author(s):  
Douglas J. Van Daele ◽  
Timothy M. McCulloch ◽  
Phyllis M. Palmer ◽  
Susan E. Langmore

Objectives: We performed a case series to enhance our understanding of the coupling between neuromuscular events and glottic closure. Methods: We performed combined flexible video laryngoscopy and electromyography in 4 healthy human subjects. Hooked-wire electrodes were placed in the superior pharyngeal constrictor, longitudinal pharyngeal, cricopharyngeus, thyroarytenoid, genioglossus, suprahyoid, and posterior cricoarytenoid muscles. A flexible endoscope tip was positioned in the oropharyngeal-hypopharyngeal region. The subjects performed multiple trials each of 10-mL normal and super-supraglottic liquid swallows. Results: Arytenoid movement consistently preceded full glottic closure and was associated with cessation of activity of the posterior cricoarytenoid muscle. In 89% of normal swallows, the glottis was partially open in the video frame before bolus passage. The maximum amount of thyroarytenoid electromyographic activity occurred during endoscopic white-out. When subjects executed a super-supraglottic swallow, early thyroarytenoid activity coincided with arytenoid contact. Conclusions: The initial medialization of the arytenoids is due to a decrease in motor tone of the posterior cricoarytenoid muscle. Full glottic closure typically occurs late in the process of swallowing, with activation of the thyroarytenoid muscle. Shifting of arytenoid medialization and glottic closure earlier in the super-supraglottic swallow indicates that glottic closure is under significant voluntary control.


2005 ◽  
Vol 114 (4) ◽  
pp. 264-270 ◽  
Author(s):  
Pamela Reed Kearney ◽  
Eric A. Mann ◽  
Christopher J. Poletto ◽  
Christy L. Ludlow

Repeated stimulation of the laryngeal mucosa occurs during speech. Single stimuli, however, can elicit the laryngeal adductor response (LAR). Our hypothesis was that the LAR to repeated rapid air pressure stimuli is centrally suppressed in humans. Hookedwire electrodes were inserted into the thyroarytenoid and cricothyroid muscles on both sides and into the posterior cricoarytenoid muscle on one side. Pairs of air puff stimuli were presented to the mucosa over the arytenoids at pressure levels three times threshold with interstimulus intervals from 250 to 5,000 ms. Bilateral thyroarytenoid responses occurred at around 150 ms to more than 70% of the initial stimuli. With repeated presentation at intervals of 2 seconds or less, the percent occurrence decreased to less than 40% and response amplitudes were reduced by 50%. Central suppression of adductor responses to repeated air puff stimuli may allow speakers to produce voice without eliciting reflexive spasms that could disrupt speech.


1994 ◽  
Vol 103 (12) ◽  
pp. 937-944 ◽  
Author(s):  
Donald S. Cooper ◽  
Maisie Shindo ◽  
Malcolm H. Hast ◽  
Uttam Sinha ◽  
Dale H. Rice

The aim of this research was to investigate the contractile properties of the posterior cricoarytenoid (PCA) muscle. Simultaneous measurements were made of the isometric force, temperature, and electromyographic activity of the dorsal cricoarytenoid muscle of anesthetized dogs during supramaximal stimulation of the recurrent laryngeal nerve for twitch and tetanic contraction. The conduction delay between stimulation of the recurrent nerve at the level of the larynx and the onset of the muscle action potential averaged 2.0 ± 0.2 milliseconds (ms), and the latent period between the onset of electrical activity of the muscle and the onset of contraction had a mean duration of 3.3 ± 0.8 ms. The mean of isometric contraction times found was 33.3 ± 2.0 ms, shorter than most previous studies of canine PCA muscle. Tetanic frequency defined as smooth contraction was higher than previous estimates. Considerations of scaling of physiological time based on animal mass were applied to analysis of the experimental findings to make possible systematic comparison of previous findings across species and animal size.


1993 ◽  
Vol 109 (6) ◽  
pp. 1043-1051 ◽  
Author(s):  
Hong-Shik Choi ◽  
Gerald S. Berke ◽  
Ming Ye ◽  
Jody Kreiman

The function of the posterior cricoarytenoid (PCA) muscle in phonation has not been well documented. To date, several electromyographic studies have suggested that the PCA muscle is not simply an abductor of the vocal folds, but also functions in phonation. This study used an in vivo canine laryngeal model to study the function of the PCA muscle. Subglottic pressure and electroglottographic, photogiottographic, and acoustic waveforms were gathered from five adult mongrel dogs under varying conditions of nerve stimulation. Subglottic pressure, fundamental frequency, sound intensity, and vocal efficiency decreased with increasing stimulation of the posterior branch of the recurrent laryngeal nerve. These results suggest that the PCA muscle not only acts to brace the larynx against the anterior pull of the adductor and cricothyroid muscles, but also functions inhibitorily in phonation by controlling the phonatory glottal width.


Sign in / Sign up

Export Citation Format

Share Document