Changes in Myosin Expression in Denervated Laryngeal Muscle

1997 ◽  
Vol 106 (12) ◽  
pp. 1076-1081 ◽  
Author(s):  
John M. Delgaudio ◽  
James J. Sciote

The effects of chronic denervation on the myosin heavy chain (MyHC) content and muscle fiber type composition of rat laryngeal muscles are described. The posterior cricoarytenoid (PCA) and thyroarytenoid (TA) muscles were removed 3 weeks, 3 months, and 6 months after recurrent laryngeal nerve sectioning. Myofibrillar adenosine triphosphatase staining of cryostat sections was performed, and fiber type percentages were determined. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate MyHC isoforms, and densitometry was subsequently used for quantitative analysis. Unoperated animals served as controls. In the PCA muscle, denervation resulted in a progressive reduction in type I MyHC (the slow-contracting isoform) to an almost complete loss at 6 months, with a concomitant increase in type II MyHCs (fast-contracting isoforms, excluding type IIL). Type IIL MyHC (laryngeal-specific isoform) remained relatively constant up to 6 months after denervation. The myosin expression in the TA muscle, which contained only type II MyHCs, remained relatively constant with denervation. Changes in fiber type composition of the muscles described from tissue staining correlated with MyHC content. These findings in laryngeal muscle confirm the dependence of type I MyHC expression upon neural input, as has been found previously in limb skeletal muscles. Since the expression of all MyHCs except the IIL was modified after denervation in the PCA muscle, it is possible that the IIL isoform is maintained by factors that differ from those in the other skeletal myosins.

2009 ◽  
pp. 253-262
Author(s):  
T Soukup ◽  
V Smerdu ◽  
G Zachařová

We examined the effects of the unilateral heterochronous isotransplantation on the fiber type composition and myosin heavy chain (MyHC) isoform content of unoperated slow soleus and fast extensor digitorum longus muscles of female inbred Lewis strain rats. Comparison was made between “control” unoperated muscles of experimental rats (after intramuscular transplantation surgery) with the corresponding muscles of completely naive (unoperated) rats of three age groups (5-, 8- and 14-month-old). This was done in order to ascertain whether these muscles can be used as reliable controls to the transplanted and host muscles for our ongoing grafting experiments. The fiber type composition was determined by assessing the histochemical reaction for myofibrillar adenosine triphosphatase, the MyHC isoform content was determined immunocytochemically using monoclonal antibodies specific to different MyHC isoforms and by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Our experiments show that the heterochronous intramuscular isotransplantation procedure had no significant effect on the fiber type composition and MyHC isoform content of the “control” unoperated muscles of the experimental rats when compared to the corresponding muscles of the naive animals. Furthermore, the duration and type of isotransplantation did not also lead to differences among corresponding “control” muscles of experimental animals. We conclude that the unoperated muscles of the experimental rats can be used as controls in our current transplantation project dealing with long-term grafting experiments.


2009 ◽  
Vol 296 (3) ◽  
pp. C525-C534 ◽  
Author(s):  
Alex Hennebry ◽  
Carole Berry ◽  
Victoria Siriett ◽  
Paul O'Callaghan ◽  
Linda Chau ◽  
...  

Myostatin (Mstn) is a secreted growth factor belonging to the tranforming growth factor (TGF)-β superfamily. Inactivation of murine Mstn by gene targeting, or natural mutation of bovine or human Mstn, induces the double muscling (DM) phenotype. In DM cattle, Mstn deficiency increases fast glycolytic (type IIB) fiber formation in the biceps femoris (BF) muscle. Using Mstn null (−/−) mice, we suggest a possible mechanism behind Mstn-mediated fiber-type diversity. Histological analysis revealed increased type IIB fibers with a concomitant decrease in type IIA and type I fibers in the Mstn−/−tibialis anterior and BF muscle. Functional electrical stimulation of Mstn−/−BF revealed increased fatigue susceptibility, supporting increased type IIB fiber content. Given the role of myocyte enhancer factor 2 (MEF2) in oxidative type I fiber formation, MEF2 levels in Mstn−/−tissue were quantified. Results revealed reduced MEF2C protein in Mstn−/−muscle and myoblast nuclear extracts. Reduced MEF2-DNA complex was also observed in electrophoretic mobility-shift assay using Mstn−/−nuclear extracts. Furthermore, reduced expression of MEF2 downstream target genes MLC1F and calcineurin were found in Mstn−/−muscle. Conversely, Mstn addition was sufficient to directly upregulate MLC promoter-enhancer activity in cultured myoblasts. Since high MyoD levels are seen in fast fibers, we analyzed MyoD levels in the muscle. In contrast to MEF2C, MyoD levels were increased in Mstn−/−muscle. Together, these results suggest that while Mstn positively regulates MEF2C levels, it negatively regulates MyoD expression in muscle. We propose that Mstn could regulate fiber-type composition by regulating the expression of MEF2C and MyoD during myogenesis.


1994 ◽  
Vol 266 (6) ◽  
pp. C1699-C1713 ◽  
Author(s):  
J. M. Schluter ◽  
R. H. Fitts

Mechanical properties were measured in single skinned fibers from rat hindlimb muscle to test the hypothesis that the fast type IIb fiber exhibits a higher maximal shortening velocity (Vo) than the fast type IIa fiber and that the difference is directly attributable to a higher myofibrillar adenosinetriphosphatase (ATPase) activity in the type IIb fiber. Additional measurements were made to test the hypotheses that regular endurance exercise increases and decreases the Vo of the type I and IIa fiber, respectively, and that the altered Vo is associated with a corresponding change in the fiber ATPase activity. Rats were exercised by 8-12 wk of treadmill running for 2 h/day, 5 day/wk, up a 15% grade at a speed of 27 m/min. Fiber Vo was determined by the slack test, and the ATPase was measured fluorometrically in the same fiber. The myosin isozyme profile of each fiber was subsequently determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The mean +/- SE Vo (7.9 +/- 0.22 fiber lengths/s) of the type IIb fiber was significantly greater than the type IIa fiber (4.4 +/- 0.21 fiber lengths/s), and the higher Vo was associated with a higher ATPase activity (927 +/- 70 vs. 760 +/- 60 microM.min-1.mm-3). The exercise program induced cardiac hypertrophy and an approximately twofold increase in the mitochondrial marker enzyme citrate synthase. Exercise had no effect on fiber diameter or peak tension per cross-sectional area in any fiber type, but, importantly, it significantly increased (23%) both the Vo and the ATPase activity of the slow type I fiber of the soleus.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1993 ◽  
Vol 75 (1) ◽  
pp. 264-267 ◽  
Author(s):  
T. J. Walters ◽  
S. H. Constable

We examined the effect of long-term intermittent cold exposure on the fiber type composition of the predominantly type I soleus and the predominantly type IIb extensor digitorum longus (EDL) muscles of rats. Cold exposure was accomplished by submerging the rats in shoulder-deep water, maintained at 20 +/- 0.5 degrees C, for 1 h/day, 5 days/wk, for < or = 19 wk. The efficacy of the treatment was tested by subjecting both groups to 20 degrees C water for 45 min while rectal temperature (Tre) and O2 consumption (VO2) were measured. The cold-exposed group displayed a 22% smaller reduction in Tre (P < 0.05) at the end of the exposure and 23% greater VO2 (P < 0.05) during the same period. Fiber type composition was determined using routine histochemical methods for myosin-adenosinetriphosphatase. In the soleus muscle of the cold-exposed rats, the number of type IIa fibers increased 156% (P < 0.05) and the number of type I fibers decreased 24% (P < 0.05). Cold exposure had no significant influence on the fiber type composition of the EDL muscle. Cold exposure resulted in an increase in citrate synthase activity of 20 and 22% in the soleus and EDL muscles, respectively (P < 0.05). The present study demonstrates that intermittent cold exposure induces a type I-to-type IIa transformation in the soleus muscle while having no influence on the EDL muscle.


2000 ◽  
Vol 47 (3) ◽  
pp. 773-779 ◽  
Author(s):  
E Zdebska ◽  
M Adamczyk-Popławska ◽  
J Kościelak

Glycophorins A from erythrocyte membranes of two patients with congenital dyserythropoietic anemia type I and type II (CDA type I and II) were analyzed for carbohydrate molar composition employing a modification of the recently published method that allowed simultaneous determination of carbohydrates and protein in electrophoretic bands of glycoproteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Zdebska & Kościelak, 1999, Anal Biochem., 275, 171-179). The modification involved a preliminary extraction of erythrocyte membranes with aqueous phenol, subsequent electrophoresis and analysis of the extracted glycophorins rather than electrophoresis and analysis of the glycophorin from intact erythrocyte membranes. The results showed a large deficit of N-acetylgalactosamine, galactose, and sialic acid residues in glycophorin A from patients with CDA type I and type II amounting to about 45% and 55%, respectively. The results strongly suggest that glycophorin A in these patients is partly unglycosylated with respect to O-linked glycans. In addition, glycophorin A from erythrocytes of a patient with CDA II but not CDA I exhibited a significant deficit of mannose and N-acetylglucosamine suggesting that its N-glycosylation site was also partly unglycosylated.


1993 ◽  
Vol 75 (6) ◽  
pp. 2767-2773 ◽  
Author(s):  
S. Aboudrar ◽  
B. Sempore ◽  
H. Koubi ◽  
H. Dechaud ◽  
D. Desplanches

The purpose of this study was to investigate the effects of a glucocorticoid antagonist, RU-486, and of adrenalectomy (ADX) on rat skeletal muscle structural properties after 3, 7, and 14 days of hindlimb suspension (H). After H, a significant loss in muscle weight was observed as early as 3 days in soleus (SOL; -10%) and adductor longus (AL; -14%) muscles. In SOL, after only 7 days, a reduction (-14%) in type I fiber percent distribution occurred, accompanied by an increase (+129%) in intermediate type I fibers. Fiber type changes increased depending on the duration of H. In AL muscle, no change occurred after H in the fiber type composition despite a similar degree of muscle atrophy. Treatment with RU-486 or ADX significantly reduced the loss of SOL weight observed after 14 days (-42 and -44%, respectively, vs. -50% for H rats), delayed the SOL atrophy (from 3 to 7 days), and normalized the shift in fiber type distribution induced by H. In SOL, administration of RU-486 (but not ADX) partly prevented the reduction in size induced by H of all the fibers. In AL, neither treatment affected the extent of muscle atrophy, even though the reduction in type IIa fiber size was prevented by RU-486 but not by ADX after 14 days of suspension. ADX or RU-486 administration did not prevent the extensor digitorum longus weight loss observed after 14 days of suspension but allowed a recovery of its normal fiber type composition.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 261 (5) ◽  
pp. C774-C779 ◽  
Author(s):  
M. Locke ◽  
E. G. Noble ◽  
B. G. Atkinson

The most prominent group of stress or heat-shock proteins (HSPs) has an Mr of approximately 70,000 and is collectively referred to as the HSP70 family. The extent of stress inducibility and subcellular location of the various HSP70 isoforms differ, but all appear to be involved with ATP-dependent stabilization or solubilization of proteins. One isoform, termed the inducible isoform of HSP70 (HSP72i), is normally absent in unstressed cells. In a previous study, we detected a protein corresponding in Mr and pI to HSP72i in unstressed rat muscle. Therefore, it was of interest to determine if this expression in unstressed muscle cells is general or confined to specific muscle fiber types. To answer this question we have employed various rat hindlimb muscles that differ in fiber type proportion from predominantly type I (soleus) to predominantly type IIB (white gastrocnemius). Proteins from muscle homogenates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted to a nylon membrane, probed with a monoclonal antibody for HSP72i, and visualized using an alkaline phosphatase-conjugated secondary antibody. Immunoblot analyses demonstrate the constitutive expression of HSP72i in rat muscles comprised primarily of type I muscle fibers (soleus), but not in muscles comprised primarily of type IIB fibers (white gastrocnemius). In muscles of mixed fiber type, HSP72i content is roughly proportional to the percentage of type I fibers. These results substantiate that unstressed rat muscles express the inducible HSP72 isoform and demonstrate that its constitutive expression is proportional to the type I muscle fiber composition.


2002 ◽  
Vol 111 (11) ◽  
pp. 962-967 ◽  
Author(s):  
Tatsutoshi Suzuki ◽  
Diane M. Bless ◽  
Nadine P. Connor ◽  
Charles N. Ford ◽  
Kyungah Lee ◽  
...  

Deficits in voice and swallowing are found in the elderly, but the underlying neuromuscular mechanisms are unclear. A potential mechanism may be denervation-induced muscle fiber transformation to a slower-contracting type of muscle fiber. This study examined young, old, and denervated rat laryngeal muscles (lateral thyroarytenoid, lateral cricoarytenoid, and posterior cricoarytenoid) to examine differences in myosin heavy chain (MHC) composition. Results of sodium dodecyl sulfate–polyacrylamide gel electrophoresis analyses indicated that all muscles were composed predominately of type IIB MHC. With aging and denervation, type IIB was reduced and type IIX, a slower-contracting isoform, was increased in the lateral thyroarytenoid and lateral cricoarytenoid muscles. In the posterior cricoarytenoid muscle, the MHC composition was relatively unchanged. These findings suggest that aging may affect laryngeal adductory function by altering muscle fiber type composition to a slower-contracting isoform, in a manner similar to that observed with denervation.


Sign in / Sign up

Export Citation Format

Share Document