scholarly journals Experimental study and numerical simulation of temperature gradient effect for steel-concrete composite bridge deck

2021 ◽  
pp. 002029402110071
Author(s):  
Da Wang ◽  
Benkun Tan ◽  
Xie Wang ◽  
Zhenhao Zhang

The temperature distribution of the bridge and its thermal effect has always been an important issue for researchers. To investigate the temperature distribution and thermal stress in the steel-concrete composite bridge deck, a 1:4 ratio temperature gradient effect experimental study was carried out in this paper. First, a set of experimental equipment for laboratory temperature gradient loading was designed based on the principle of temperature gradient caused by solar radiation, the temperature gradient obtained from the measurements were compared with the specifications and verified by the FE method. Next, the loading of the steel-concrete composite deck at different temperatures was performed. The thermal stress response and change trend of the simply supported and continuously constrained boundary conditions under different temperature loads were analyzed. The experimental results show that the vertical temperature of steel-concrete composite bridge deck is nonlinear, which is consistent with the temperature gradient trend of specifications. The vertical temperature gradient has a great influence on the steel-concrete composite bridge deck under different constraints, and the extreme stress of concrete slab and steel beam is almost linear with the temperature gradient. Finally, some suggestions for steel-concrete composite deck design were provided based on the research results.

2021 ◽  
Vol 230 ◽  
pp. 111689
Author(s):  
Zheqi Peng ◽  
Xin Wang ◽  
Lining Ding ◽  
Yizhi Yang ◽  
Zhishen Wu ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 1980 ◽  
Author(s):  
Lei Zhao ◽  
Ling-Yu Zhou ◽  
Guang-Chao Zhang ◽  
Tian-Yu Wei ◽  
Akim D. Mahunon ◽  
...  

To study the temperature distribution in the China Railway Track System Type II ballastless slab track on a high-speed railway (HSR) bridge, a 1:4 scaled specimen of a simply-supported concrete box girder bridge with a ballastless track was constructed in laboratory. Through a rapid, extreme high temperature test in winter and a conventional high temperature test in summer, the temperature distribution laws in the track on the HSR bridge were studied, and the vertical and transverse temperature distribution trend was suggested for the track. Firstly, the extreme high temperature test results showed that the vertical temperature and the vertical temperature difference distribution in the track on HSR bridge were all nonlinear with three stages. Secondly, the extreme high temperature test showed that the transverse temperature distribution in the track was of quadratic parabolic nonlinear form, and the transverse temperature gradient in the bottom base was significantly higher than that of the other layers of the track. Thirdly, the three-dimensional temperature distribution in the track on HSR bridge was a nonlinear, three-stage surface. Furthermore, similar regularities were also obtained in the conventional high temperature test, in which the temperature span ranges were different from those of the extreme high temperature test. In addition, the conventional high temperature test also showed that under the natural environment conditions, the internal temperature gradient in the track layers changed periodically (over a period of 24 h).


Sign in / Sign up

Export Citation Format

Share Document