Intelligent grading system based on deep learning

Author(s):  
Meng Xiao ◽  
Haibo Yi

According to the survey, off-line examination is still the main examination method in universities, primary and secondary schools. The grading processing of off-line examination is time-consuming. Besides, since the off-line grading is subjective, it is error-prone. In order to address the challenges in off-line examinations of universities, primary and secondary schools, it is very urgent to improve the efficiency of off-line grading. In order to realize intelligent grading for off-line examinations, we exploit deep learning techniques to off-line grading. First, we propose an image processing method for English letters. Second, we propose a image recognition method based on deep learning for English letters. Third, we propose a lightweight framework for grading. Based on the above designs, we design an intelligent grading system based on deep learning. We implement the system and the result shows that the intelligent grading system can batch grading efficiently. Besides, compared with related designs, the proposed system is more flexible and intelligent.

2019 ◽  
Vol 63 (11) ◽  
pp. 1658-1667
Author(s):  
M J Castro-Bleda ◽  
S España-Boquera ◽  
J Pastor-Pellicer ◽  
F Zamora-Martínez

Abstract This paper presents the ‘NoisyOffice’ database. It consists of images of printed text documents with noise mainly caused by uncleanliness from a generic office, such as coffee stains and footprints on documents or folded and wrinkled sheets with degraded printed text. This corpus is intended to train and evaluate supervised learning methods for cleaning, binarization and enhancement of noisy images of grayscale text documents. As an example, several experiments of image enhancement and binarization are presented by using deep learning techniques. Also, double-resolution images are also provided for testing super-resolution methods. The corpus is freely available at UCI Machine Learning Repository. Finally, a challenge organized by Kaggle Inc. to denoise images, using the database, is described in order to show its suitability for benchmarking of image processing systems.


2020 ◽  
Vol 37 (9) ◽  
pp. 1661-1668
Author(s):  
Min Wang ◽  
Shudao Zhou ◽  
Zhong Yang ◽  
Zhanhua Liu

AbstractConventional classification methods are based on artificial experience to extract features, and each link is independent, which is a kind of “shallow learning.” As a result, the scope of the cloud category applied by this method is limited. In this paper, we propose a new convolutional neural network (CNN) with deep learning ability, called CloudA, for the ground-based cloud image recognition method. We use the Singapore Whole-Sky Imaging Categories (SWIMCAT) sample library and total-sky sample library to train and test CloudA. In particular, we visualize the cloud features captured by CloudA using the TensorBoard visualization method, and these features can help us to understand the process of ground-based cloud classification. We compare this method with other commonly used methods to explore the feasibility of using CloudA to classify ground-based cloud images, and the evaluation of a large number of experiments show that the average accuracy of this method is nearly 98.63% for ground-based cloud classification.


2020 ◽  
Author(s):  
Jordan Reece ◽  
Margaret Couvillon ◽  
Christoph Grüter ◽  
Francis Ratnieks ◽  
Constantino Carlos Reyes-Aldasoro

AbstractThis work describe an algorithm for the automatic analysis of the waggle dance of honeybees. The algorithm analyses a video of a beehive with 13,624 frames, acquired at 25 frames/second. The algorithm employs the following traditional image processing steps: conversion to grayscale, low pass filtering, background subtraction, thresholding, tracking and clustering to detect run of bees that perform waggle dances. The algorithm detected 44,530 waggle events, i.e. one bee waggling in one time frame, which were then clustered into 511 waggle runs. Most of these were concentrated in one section of the hive. The accuracy of the tracking was 90% and a series of metrics like intra-dance variation in angle and duration were found to be consistent with literature. Whilst this algorithm was tested on a single video, the ideas and steps, which are simple as compared with Machine and Deep Learning techniques, should be attractive for researchers in this field who are not specialists in more complex techniques.


2020 ◽  
Author(s):  
dongshen ji ◽  
yanzhong zhao ◽  
zhujun zhang ◽  
qianchuan zhao

In view of the large demand for new coronary pneumonia covid19 image recognition samples,the recognition accuracy is not ideal.In this paper,a new coronary pneumonia positive image recognition method proposed based on small sample recognition. First, the CT image pictures are preprocessed, and the pictures are converted into the picture formats which are required for transfer learning. Secondly, perform small-sample image enhancement and expansion on the converted picture, such as miscut transformation, random rotation and translation, etc.. Then, multiple migration models are used to extract features and then perform feature fusion. Finally,the model is adjusted by fine-tuning.Then train the model to obtain experimental results. The experimental results show that our method has excellent recognition performance in the recognition of new coronary pneumonia images,even with only a small number of CT image samples.


Sign in / Sign up

Export Citation Format

Share Document