Standard Specification Illustrates Bandpass Filter Theory

1984 ◽  
Vol 21 (2) ◽  
pp. 179-183
Author(s):  
H. Sutcliffe

Standard specifications for testing interference define characteristics of bandpass filters in a form providing an excellent basis for learning useful concepts. An example introduces time-frequency domain relations, bandpass-lowpass relations, transform methods, convolution and a comparison between impulse responses of idealised and real bandpass filters.

2007 ◽  
Vol 5 ◽  
pp. 297-304 ◽  
Author(s):  
M. Anis ◽  
R. Tielert

Abstract. In this paper, we propose a new technique to extract low power UWB pulse radio signals, near to noise level, using statistical correlation technique in frequency domain. The receiver consists of many narrow bandpass filters which extract energy either from transmitted UWB signal, interfering channels or noise. Transmitted UWB data can be eliminated by statistical correlation of multiple bandpass filter outputs. Super-regenerative oscillators, tuned within UWB spectrum, are designed as bandpass filters. Summers and comparators perform statistical correlation.


Author(s):  
Wentao Xie ◽  
Qian Zhang ◽  
Jin Zhang

Smart eyewear (e.g., AR glasses) is considered to be the next big breakthrough for wearable devices. The interaction of state-of-the-art smart eyewear mostly relies on the touchpad which is obtrusive and not user-friendly. In this work, we propose a novel acoustic-based upper facial action (UFA) recognition system that serves as a hands-free interaction mechanism for smart eyewear. The proposed system is a glass-mounted acoustic sensing system with several pairs of commercial speakers and microphones to sense UFAs. There are two main challenges in designing the system. The first challenge is that the system is in a severe multipath environment and the received signal could have large attenuation due to the frequency-selective fading which will degrade the system's performance. To overcome this challenge, we design an Orthogonal Frequency Division Multiplexing (OFDM)-based channel state information (CSI) estimation scheme that is able to measure the phase changes caused by a facial action while mitigating the frequency-selective fading. The second challenge is that because the skin deformation caused by a facial action is tiny, the received signal has very small variations. Thus, it is hard to derive useful information directly from the received signal. To resolve this challenge, we apply a time-frequency analysis to derive the time-frequency domain signal from the CSI. We show that the derived time-frequency domain signal contains distinct patterns for different UFAs. Furthermore, we design a Convolutional Neural Network (CNN) to extract high-level features from the time-frequency patterns and classify the features into six UFAs, namely, cheek-raiser, brow-raiser, brow-lower, wink, blink and neutral. We evaluate the performance of our system through experiments on data collected from 26 subjects. The experimental result shows that our system can recognize the six UFAs with an average F1-score of 0.92.


2021 ◽  
Vol 11 (3) ◽  
pp. 1084
Author(s):  
Peng Wu ◽  
Ailan Che

The sand-filling method has been widely used in immersed tube tunnel engineering. However, for the problem of monitoring during the sand-filling process, the traditional methods can be inadequate for evaluating the state of sand deposits in real-time. Based on the high efficiency of elastic wave monitoring, and the superiority of the backpropagation (BP) neural network on solving nonlinear problems, a spatiotemporal monitoring and evaluation method is proposed for the filling performance of foundation cushion. Elastic wave data were collected during the sand-filling process, and the waveform, frequency spectrum, and time–frequency features were analysed. The feature parameters of the elastic wave were characterized by the time domain, frequency domain, and time-frequency domain. By analysing the changes of feature parameters with the sand-filling process, the feature parameters exhibited dynamic and strong nonlinearity. The data of elastic wave feature parameters and the corresponding sand-filling state were trained to establish the evaluation model using the BP neural network. The accuracy of the trained network model reached 93%. The side holes and middle holes were classified and analysed, revealing the characteristics of the dynamic expansion of the sand deposit along the diffusion radius. The evaluation results are consistent with the pressure gauge monitoring data, indicating the effectiveness of the evaluation and monitoring model for the spatiotemporal performance of sand deposits. For the sand-filling and grouting engineering, the machine-learning method could offer a better solution for spatiotemporal monitoring and evaluation in a complex environment.


Sign in / Sign up

Export Citation Format

Share Document