Experimental analysis of the response of fiber Bragg grating sensors under non-uniform strain field in a twill woven composite

2018 ◽  
Vol 53 (7) ◽  
pp. 893-908 ◽  
Author(s):  
M Kharshiduzzaman ◽  
A Gianneo ◽  
A Bernasconi

Fiber Bragg grating optical sensors are nowadays widely employed for strain measurement for structural health monitoring and in experimental mechanics. Compared to other techniques, i.e. electrical strain gauges, fiber Bragg grating offer immunity to electromagnetic interference and allow for long transmission lead lines. Moreover, thanks to multiplexing interrogation, several sensors can be photo-imprinted into a single fiber core allowing for strain evaluation at multiple locations simultaneously. They have high adaptability to composite materials, particularly because it is possible to be embedded into laminates without affecting their strength and stiffness. Fiber Bragg grating strain measurements are based on the detection of the wavelength shift of their peak reflected spectrum. However, subjected to strain gradients, the spectral response of fiber Bragg grating sensors may be distorted and the sharp peak may not be retained. In this work, the response of fiber Bragg grating sensors having different grating lengths and bonded to the surface of a carbon fiber-reinforced twill woven laminate was analyzed. The analysis combined transfer matrix (T-matrix) with digital image correlation methods. Digital image correlation technique was used to capture the non-uniform strain fields in the woven composites and measured strains were employed in T-Matrix algorithm to simulate fiber Bragg grating response. Using this approach, the effect of the length of the fiber Bragg grating on the strain measurement is assessed and results discussed. Moreover, it is shown that T-matrix formulation combined with a non-contact strain field measurement technique, as DIC, is an appropriate technique to simulate the behavior of fiber Bragg grating bonded to composite materials of complex microstructure.

2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


2018 ◽  
Vol 89 (10) ◽  
pp. 105110 ◽  
Author(s):  
Xinxing Shao ◽  
Zhenning Chen ◽  
Xiangjun Dai ◽  
Xiaoyuan He

2017 ◽  
Vol 8 (2) ◽  
pp. 337-347 ◽  
Author(s):  
Jorge Barrios-Muriel ◽  
Francisco Javier Alonso Sánchez ◽  
David Rodríguez Salgado ◽  
Francisco Romero-Sánchez

Abstract. Today there is continuous development of wearable devices in various fields such as sportswear, orthotics and personal gadgets, among others. The design of these devices involves the human body as a support environment. Based on this premise, the development of wearable devices requires an improved understanding of the skin strain field of the body segment during human motion. This paper presents a methodology based on a three dimensional digital image correlation (3D-DIC) system to measure the skin strain field and to estimate anatomical lines with minimum deformation as design criteria for the aforementioned wearable devices. The errors of displacement and strain measurement related to 3-D reconstruction and out-of-plane motion are investigated and the results are acceptable in the case of large deformation. This approach can be an effective tool to improve the design of wearable devices in the clinical orthopaedics and ergonomics fields, where comfort plays a key role in supporting the rehabilitation process.


2016 ◽  
Vol 23 (3) ◽  
pp. 461-480 ◽  
Author(s):  
Sze-Wei Khoo ◽  
Saravanan Karuppanan ◽  
Ching-Seong Tan

Abstract Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.


Sign in / Sign up

Export Citation Format

Share Document