Effect of the variation of the electrodeposition time of hydroxyapatite/chitosan coatings on AISI 316L SS

2021 ◽  
pp. 002199832110386
Author(s):  
JF Louvier-Hernández ◽  
E García ◽  
G Mendoza-Leal ◽  
T Flores-Flores ◽  
M Flores-Martínez ◽  
...  

Type AISI 316 L Stainless Steel (316 L SS) plays a crucial role in bone replacement surgery due to its excellent mechanical features, availability at low cost, and ease of fabrication, but its performance is low when in contact with the aggressive conditions of the human body fluids. Chitosan (CTS) is a biopolymer that blended with hydroxyapatite (HAp) could form coatings to improve surface properties of a metallic orthopedic prosthesis, i.e., corrosion-resistance to the base metal and biocompatibility of the ceramic on the metal surface. This work aims to obtain and evaluate HAp/CTS composite coatings deposited on the surface of AISI 316 L SS substrate by electrophoretic deposition (EDP) technique. The influence of the time of deposition on the coating’s characteristics and properties was characterized and discussed. The coatings were structural, elemental, and chemically characterized using X-Ray diffraction and Raman spectroscopy. HV values in a range of 64.7 to 111.5 were observed, showing the lowest HAp/CTS-30.0 coating values for all the loads applied. The lowest HV value was nearby to the reported value for human bone’s hardness, around 47HV; considering that the coating will be in constant contact motion with the bone surface, the contact with a softer surface could decrease the wear on the human bone. The hardness decreases with the coating thickness’s increment because the coating presented a higher plastic deformation than the 316 L SS surfaces. A decrease in the roughness average (Ra) was well noticed as the deposition time increased; meanwhile, the thickness increased as the deposition time increased.

2019 ◽  
Vol 38 (2019) ◽  
pp. 792-805 ◽  
Author(s):  
S. Ramakrishna Kandala ◽  
Kantesh Balani ◽  
Anish Upadhyaya

AbstractThe present study compares the mechanical properties and electrochemical behaviour of austenitic (AISI 316 L) stainless steel compacted at different pressures (200, 400 and 600 MPa), which are conventionally sintered at supersolidus temperature of 1,400°C. As expected, increase in compaction pressure (from 200 MPa) to 600 MPa has shown decreased shrinkage (from 7.3% to 4.2% radial and 5.5% to 3.4% axial, respectively) and increased densification (up to ~92%). Their electrochemical behaviour was investigated in 0.1 N H2SO4 solution by potentiodynamic polarization and electrochemical impedance spectroscopy. The mechanical properties (such as yield-, tensile- and transverse rupture strength) and electrochemical behaviour with pressure have been correlated with densification response and microstructure (pore type, volume and morphology). Highest densification (~92% theoretical) achieved at 600 MPa (compaction pressure) and 1,400°C (sintering temperature) resulted in excellent combination of tensile strength and ductility (456 ± 40 MPa and 25 ± 1.1% respectively), while showing lowest corrosion rate (0.1 mmpy or 4.7 mpy) due to the presence of isolated porosity in the sintered samples.


2015 ◽  
Vol 830-831 ◽  
pp. 314-318 ◽  
Author(s):  
S. Shashi Kumar ◽  
N. Murugan ◽  
K.K. Ramachandran

The present investigation is carried out to investigate on mechanical and metallurgical properties of Friction stir (FS) / Underwater Friction stir (UFS) welded 3 mm thick AISI 316 L stainless steel joints. Experiments were carried out at a tool rotational speed of 700 rpm, welding speed of 45 mm/min and axial force of 12 kN. Defect free joints were confirmed by visual inspection. A marginal rise of about 4.5 % increase in the joint strength is achieved in water cooling than by gas cooling technique. Reduced peak temperature in water cooled joint led to better grain refinement in the weld nugget enhancing FSW tool life. No sign of secondary phase precipitation was observed in the weld joints which was confirmed by Energy Dispersive Spectroscopy (EDS) spectrums and micro etchants like Groesbeck and modified Murakami reagents in the weld nugget.


1992 ◽  
Vol 13 (2) ◽  
pp. 151-160
Author(s):  
G. Moretti ◽  
G. Quartarone ◽  
A. Tassan ◽  
A. Zingales

2010 ◽  
Vol 660-661 ◽  
pp. 454-459 ◽  
Author(s):  
Maurício David Martins das Neves ◽  
Luzinete Pereira Barbosa ◽  
Luís Carlos Elias da Silva ◽  
Olandir Vercino Correa ◽  
Isolda Costa

Stainless steel (SS) powders are used in the preparation of sintered SS products. One of the applications of sintered SS products is as filters in the petrochemical and food processing industries. In these industries, the SS filters are subject to severe conditions associated with the removal of solid particles from the fluid. Hence, SS filters should have adequate mechanical strength and high corrosion resistance. Welding can be used to manufacture SS filters. In this study, sintered AISI 316L specimens were welded using the TIG (Tungsten Inert Gas) process. The weld joints were examined by optical microscopy and by scanning electron microscopy. Electrochemical polarization measurements were carried out to evaluate the influence of welding on the corrosion resistance of sintered filters.


Author(s):  
João PM Pragana ◽  
Ivo MF Bragança ◽  
Carlos MA Silva ◽  
Paulo AF Martins

This paper is focussed on the mechanical and formability characterisation of wire-arc additive manufactured (WAAM) AISI 316-L stainless-steel tubes. The methodology to be presented involved carrying out tension and ring hoop tension tests on specimens extracted from the tube longitudinal, transverse and inclined directions. The force evolutions, acquired from the load cells, and the strain measurements, retrieved from digital image correlation and from thickness measurements along the cracks, allowed obtaining the stress-strain curves, the strain paths and the onset of failure by fracture for the three different tube directions. Special attention was paid to the ring hoop test, which was revisited to determine the appropriateness of using ring specimens with one or two dumbbell geometries. The originality of using the ring hoop tension test in WAAM tubes with strong anisotropic behaviour allowed obtaining strain loading paths that range from plane strain to pure shear deformation conditions. Resort to commercial AISI 316-L stainless-steel tubes during the presentation is included for reference purposes.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Yanyan Wang ◽  
Wen Yue ◽  
Jiajie Kang ◽  
Lina Zhu ◽  
Zhiqiang Fu ◽  
...  

It has been proved that surface nanocrstallization pretreatment is beneficial to plasma nitriding of steel by enhancing nitrogen diffusion, while the tribological properties of the nitrided nanostructured steel under boundary lubrication are not clear. In this work, AISI 316 L stainless steel with and without ultrasonic cold forging technology (UCFT) pretreatment was plasma nitrided at 500 °C for 4 h. The effects of UCFT pretreatment on the microstructure and properties of the nitrided layer and the tribochemical interactions between the nitrided layer and friction modifier molybdenum dithiocarbamate (MoDTC) and antiwear additive zinc dialkyldithio-phosphate (ZDDP) were investigated using SRV tribometer, scanning electron microscopy (SEM), vickers hardness tester, optical microscope, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). Surface analyses confirm the formation of a 20 μm thick nitrided layer on the UCFT-pretreated sample and it had higher hardness than that on the unpretreated sample. Furthermore, the nitrided UCFT-pretreated sample presented better synergetic effect with MoDTC and ZDDP on tribological behaviors than the nitrided unpretreated sample. This is attributed to the higher contents of Mo, S, Zn, P, and MoS2/MoO3 ratio in the tribofilms on the nitrided UCFT-pretreated sample.


Sign in / Sign up

Export Citation Format

Share Document