Interfacial, mechanical, and thermal behavior of PEI/glass fiber welded joints influenced by hygrothermal conditioning

2021 ◽  
pp. 002199832110558
Author(s):  
Luís Felipe Barbosa Marques ◽  
Jonas Frank Reis ◽  
Ana Beatriz Ramos Moreira Abrahão ◽  
Luis Rogério D Oliveira Hein ◽  
Edson Cocchieri Botelho ◽  
...  

This work aims to characterize the influence of hygrothermal conditioning on the mechanical and thermal behavior as well as the fractographic aspects of the interface of poly(ether imide) and glass fiber composite joints welded by electrical resistance using 400 mesh of AISI 304 stainless steel. The composites were mechanically characterized by Lap Shear Strength (LSS) and End Notched Flexure (ENF) testing to investigate maximum shear stress and energy from mode II interlaminar fracture toughness. Fractography was performed by SEM, while the influence on glass transition temperature and working temperature were evaluated by Dynamic-Mechanical Analysis and thermogravimetry. In the conditioned samples, the mechanical properties reduced 23% in the LSS test and 28% in the ENF test, while the fractography studies revealed elements of interlaminar and intralaminar fracture in both conditions. Thermal properties did not change significantly to disqualify this composite when applied to welding.

2019 ◽  
Vol 54 (6) ◽  
pp. 731-743 ◽  
Author(s):  
Dielly Cavalcanti da Silva Monte Vidal ◽  
Heitor L Ornaghi ◽  
Felipe Gustavo Ornaghi ◽  
Francisco Maciel Monticeli ◽  
Herman Jacobus Cornelis Voorwald ◽  
...  

In the present study, different stacking sequences on hybrid carbon/glass/epoxy composites laminate were examined in relation to thermal, dynamic mechanical and long-term behavior. A positive hybrid effect was found for both hybrid composites (interleaved-Hybrid 1 and in block-Hybrid 2) showing that in some cases hybrid composites can properly replace carbon or glass composites. The composite containing all glass fiber in the middle (Hybrid 2) presented similar thermal behavior when compared to glass fiber composite. All hybrid composites presented higher storage modulus when compared to glass composite. Dynamic mechanical analysis showed that both hybrids can satisfactorily perform the requirement in a wide temperature range. The long-term prediction was successfully applied for all composites, showing to be highly temperature-dependent. Hence, depending on the application requirement, both hybrids can be used, saving weight and cost.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2913
Author(s):  
Wenfu Zhang ◽  
Cuicui Wang ◽  
Shaohua Gu ◽  
Haixia Yu ◽  
Haitao Cheng ◽  
...  

In order to study the performance of the bamboo fiber composites prepared by filament winding, composites reinforced with jute fiber and glass fiber were used as control samples. The structure and mechanical properties of the composites were investigated by scanning electric microscope (SEM), tensile testing, bending testing, and dynamic mechanical analysis. The results demonstrated that the bamboo fiber composites exhibited lower density (0.974 g/cm3) and mechanical properties in comparison of to fiber composite and glass fiber composite, because the inner tissue structure of bamboo fiber was preserved without resin adsorbed into the cell cavity of fibrous parenchyma. The bamboo fibers in composites were pulled out, while the fibers in the surface of composites were torn, resulting in the lowest mechanical performance of bamboo fiber composites. The glass transition temperature of twisting bamboo fiber Naval Ordnance Laboratory (TBF-NOL) composite (165.89 °C) was the highest in general, which indicated that the TBF circumferential composite had the best plasticizing properties and better elasticity, the reason being that the fiber-reinforced epoxy circumferential composite interface joint is a physical connection, which restricts the movement of the molecular chain of the epoxy matrix, making the composite have a higher storage modulus (6000 MPa). In addition, The TBF-NOL had the least frequency dependence, and the circumferential composite prepared by TBF had the least performance variability. Therefore, the surface and internal structures of the bamboo fiber should be further processed and improved by decreasing the twisting bamboo fiber (TBF) diameter and increasing the specific surface area of the TBF and joint surface between fibers and resin, to improve the comprehensive properties of bamboo fiber composites.


2019 ◽  
Vol 777 (12) ◽  
pp. 73-77
Author(s):  
B.A. BONDAREV ◽  
◽  
T.N. STORODUBTSEVA ◽  
D.A. KOPALIN ◽  
S.V. KOSTIN ◽  
...  

2013 ◽  
Vol 38 (22) ◽  
pp. 9271-9284 ◽  
Author(s):  
Andrew H. Weisberg ◽  
Salvador M. Aceves ◽  
Francisco Espinosa-Loza ◽  
Elias Ledesma-Orozco ◽  
Blake Myers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document