Fiber-Optic and Ultrasonic Measurements for In-Situ Cure Monitoring of Graphite/Epoxy Composites

1999 ◽  
Vol 33 (20) ◽  
pp. 1860-1881 ◽  
Author(s):  
J. -Y. Chen ◽  
S. V. Hoa ◽  
C. -K. Jen ◽  
H. Wang
1997 ◽  
Vol 31 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Y. M. Liu ◽  
C. Ganesh ◽  
J. P. H. Steele ◽  
J. E. Jones

1994 ◽  
Vol 53 (13) ◽  
pp. 1805-1812 ◽  
Author(s):  
R. E. Lyon ◽  
K. E. Chike ◽  
S. M. Angel

Author(s):  
Mehmet Yildiz ◽  
Nazli G. Ozdemir ◽  
Gokhan Bektas ◽  
Casey J. Keulen ◽  
Talha Boz ◽  
...  

Research conducted on in situ process monitoring of resin transfer molded composites with fiber optic sensors is presented. A laboratory scale resin transfer molding (RTM) apparatus was designed and built with the capability of embedding fiber optic sensors and visually observing the resin filling process. Both fiber Bragg grating (FBG) and etched fiber (EF) sensors are embedded into glass fiber reinforcements in the RTM mold and used to monitor the resin flow front and cure. The cure cycle of the resin system utilized in this work is also studied using a Fresnel reflection refractometer (FRR) sensor. The results of this study show that both the FBG and EF sensors can be used efficiently for flow and cure monitoring of the RTM process. The experimental results of the EF and FRR sensors agree with those of the FBG sensors for cure monitoring.


2002 ◽  
Author(s):  
Richard B. Thompson ◽  
Hui-Hui Zeng ◽  
Carol A. Fierke ◽  
Gary Fones ◽  
James W. Moffett

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lian Wang ◽  
Juncheng Zhou ◽  
Yuhao Chen ◽  
Liu Xiao ◽  
Guojia Huang ◽  
...  

Abstract An intensity modulated fiber-optic carbon monoxide (CO) sensor by integrating in-situ solvothermal-growth Ag/Co-MOF sensing film is fabricated and evaluated. The Michelson interference sensing structure is composed of single-mode fiber (SMF), enlarged taper, thin-core fiber (TCF), and Ag film as the reflector. Ag/Co-MOF was coated on the cladding of the TCF as the sensing material, and the enlarged taper is located between TCF and SMF as the coupler. The structure, morphology, compositions and thermal stability of the Ag/Co-MOF sensing film were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), etc. The sensitivity of the sensor is 0.04515 dB/ppm, and the fitting parameter of the CO concentration is 0.99876. In addition, the sensor has the advantages of good selectivity, good signal and temperature stability, and it has potential application in trace CO detection.


Sign in / Sign up

Export Citation Format

Share Document