The Effect of Time and Force Magnitude on Orthodontic Tooth Movement

1979 ◽  
Vol 58 (8) ◽  
pp. 1754-1764 ◽  
Author(s):  
Ryszard J. Pryputniewicz ◽  
Charles J. Burstone

The holographic technique, recently developed for precise and accurate measurement of tooth displacements, was used to study the three-dimensional motion of human teeth. Maxillary central incisors were loaded with forces of 300 grams and 500 grams. Translations and rotations in three-dimensions were measured over 45 seconds. The experimental results, presented as a function of time, indicate that the instantaneous centers of rotation can be represented by space centrodes that are characteristic for each patient and the applied force system.

2015 ◽  
Vol 5 ◽  
pp. 229-231
Author(s):  
Praveen Mehrotra ◽  
Jitendra Bhagchandani ◽  
Sonahita Agarwal ◽  
Anchit Thukral

Maxillary canines are known as the cornerstones of mouth. They are considered to be important for esthetics and for functional occlusion. Any disturbance in the eruption process leading to an aberrant position will hamper esthetics as well as function. Orthodontic tooth movement of total buccally blocked-out canine is usually difficult as it is related with the problems of severe crowding, midline deviation, involvement of long root movement and risk of gingival recession. Such conditions can be treated orthodontically in various ways, but this clinical innovation helps to correct the buccally placed canines into the arch with a precise control of the canine in all the Three-dimensions (3D) of space as well as providing maximum comfort to the patient by placing the canine loop on the palatal surface of the tooth, reducing soreness on the labial mucosa. It can be easily fabricated and activated at chairside for either simultaneous or sequential control in 3D.


2017 ◽  
Vol 11 (1) ◽  
pp. 466-475 ◽  
Author(s):  
Taísa Boamorte Raveli ◽  
Dirceu Barnabé Raveli ◽  
Kelei Cristina de Mathias Almeida ◽  
Ary dos Santos Pinto

Background: Tipped lower molar over edentulous space is very common in orthodontics practice when adults seek treatment. The segmented arch technique features a predictable force system that provides a controlled release of force that can produce light and continuous tooth movement. Case Description: A female adult patient, who lost a permanent lower first molar, needed correction of the position of her permanent first molar place. Instead of making space for rehabilitation, it was closed after second molar uprighting and a balanced interdigitation was created without prosthetics. The patient was successfully treated with segmented arch technique using root correction spring activated with geometry VI to promote uprighting of a tipped molar and Niti spring coil to promote space closure. Practical Implications: Segmented arch technique is known to provide predictable light and continuous forces, which is very much indicated in adult treatment. There are several things to consider when orthodontically treating adult patients. Their periodontal conditions might not be ideal, less bone apposition may occur, and side effects of orthodontic tooth movement are expected. Thus, a predictable and controlled orthodontic treatment is needed.


2015 ◽  
Vol 16 (9) ◽  
pp. 740-743 ◽  
Author(s):  
HP Raghuveer ◽  
M Hemanth ◽  
MS Rani ◽  
Chathura Hegde ◽  
B Vedavathi ◽  
...  

ABSTRACT Background Orthodontic tooth movement occurs due to various biomechanical changes in the periodontium. Forces within the optimal range yield maximum tooth movement with minimum deleterious effects. Among various types of tooth movements, extrusion and rotational movements are seen to be associated with the least amount of root resorption and have not been studied in detail. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with extrusion and rotational movements using the finite element method FEM. Materials and methods A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with extrusive and rotational movements by a 3D FEM using ANSYS software with linear material properties. Results It was observed that with the application of extrusive load, the tensile stresses were seen at the apex, whereas the compressive stress was distributed at the cervical margin. With the application of rotational movements, maximum compressive stress was distributed at the apex and cervical third, whereas the tensile stress was distributed on cervical third of the PDL on the lingual surface. Conclusion For extrusive movements, stress values over the periodontal ligament was within the range of optimal stress value as proposed by Lee, with a given force system by Profitt as optimum forces for orthodontic tooth movement using linear properties. During rotation there are stresses concentrated at the apex, hence due to the concentration of the compressive forces at the apex a clinician must avoid placing heavy stresses during tooth movement. How to cite this article Hemanth M, Raghuveer HP, Rani MS, Hegde C, Kabbur KJ, Vedavathi B, Chaithra D. An Analysis of the Stress Induced in the Periodontal Ligament during Extrusion and Rotation Movements: A Finite Element Method Linear Study Part I. J Contemp Dent Pract 2015;16(9):740-743.


Author(s):  
Marc A. de Gouyon Matignon de Pontouraude ◽  
Johannes W. Von den Hoff ◽  
Frank Baan ◽  
Robin Bruggink ◽  
Marjon Bloemen ◽  
...  

Abstract Objectives Individual orthodontic treatment duration is hard to predict. Individual biological factors are amongst factors influencing individual rate of orthodontically induced tooth movement (OTM). The study aim is to determine the rate of OTM by a novel 3D method and investigate parameters that may predict the rate of tooth movement. Materials and methods In this prospective cohort study, rate of OTM was determined from 90 three-dimensional intra-oral scans in 15 patients (aged 12–15) undergoing orthodontic treatment. For each patient, intra-oral scans were taken every week for up to 6 weeks (T0–T5). The teeth were segmented from the scans and the scans were superimposed on the palatal rugae. The rate of OTM was calculated for each tooth. Other parameters were gingival inflammation, contact-point displacement and the biological markers, matrix metalloproteinases (MMP), MMP-9 and MMP-2 in gingival crevicular fluid (GCF). Results Our study showed a high variation in the rate of OTM, varying from 0.15 to 1.24 mm/week. Teeth in the anterior segment tended to move more compared with the posterior segment. The contact point displacement and gingival inflammation varied greatly amongst the patients. The MMPs measured did not correlate with tooth movement. However, the gingival inflammation index showed a significant correlation with OTM. Future studies should include other biological markers related to bone-remodeling. Conclusion This novel and efficient 3D method is suitable for measuring OTM and showed large individual variation in rate of OTM. Clinical relevance Patients show different rates of OTM. The rate of OTM in an individual patient can provide guidance in timing of follow-up appointments.


A numerical scheme for shock propagation in three space dimensions is presented. The motion of the leading shock surface is calculated by using Whitham’s theory of geometrical shock dynamics. The numerical scheme is used to examine the focusing of initially curved shock surfaces and the diffraction of shocks in a pipe with a 90° bend. Numerical and experimental results for the corresponding two-dimensional or axi-symmetrical cases are used to compare with the new and more complicated three-dimensional results.


2013 ◽  
Vol 58 (10) ◽  
pp. 1498-1510 ◽  
Author(s):  
A.F. Heckler ◽  
Z. Mirzaei ◽  
I. Pereira ◽  
C.A. Simmons ◽  
S.-G. Gong

2008 ◽  
Vol 78 (3) ◽  
pp. 502-509 ◽  
Author(s):  
Carmen Gonzales ◽  
Hitoshi Hotokezaka ◽  
Masako Yoshimatsu ◽  
Joseph H. Yozgatian ◽  
M. Ali Darendeliler ◽  
...  

Abstract Objective: To test the hypothesis that there is no difference in the effect of different continuous moderate to very heavy forces on root resorption or amount of tooth movement. Materials and Methods: In the study, 10, 25, 50 and 100 g mesial force were applied to the maxillary first molars of rat using nickel titanium closed-coil springs for 3 days, 14 days, and 28 days. The molars were extracted and the surface areas of the root resorption craters were measured using scanning electron microscope. The depths of the root resorption craters were measured using a three-dimensional laser scanning microscope. Tooth movement of the maxillary first molar was measured in relation to the maxillary second molar on digitized lateral cephalometric radiographs. Results: Three days after force application, the tooth movement was not proportionally related to force magnitude. However, 14 days of force application resulted in significantly more tooth movement in the 10, 25, and 50 g force groups than in the 100 g force group. A force application of 10 g produced significantly more tooth movement at 28 days than all the other three force applications. The largest and deepest resorption craters were observed in the disto-buccal root followed by disto-palatal, middle-buccal, middle-palatal, and mesial root. Root resorption and tooth movement increased over time from 3 to 28 days. As heavier forces were applied, greater root resorption occurred. Conclusion: The hypothesis is rejected. The light mesially oriented forces, as applied in this study, produced more tooth movement and less root resorption compared with heavier forces.


2019 ◽  
Vol 13 (4) ◽  
pp. 311-320 ◽  
Author(s):  
Tahereh Hosseinzadeh Nik ◽  
Elaheh Gholamrezaei ◽  
Mohammad Ali Keshvad

The surgery-first approach (SFA), which proceeds without presurgical orthodontic treatment, is assumed to shorten the treatment course because the direction of post-surgical orthodontic tooth movement conforms to the normal muscular forces. Moreover, the regional acceleratory phenomenon (RAP), evoked by surgery, helps in tooth alignment and compensation in a faster way. Although SFA has definite advantages, especially in class III individuals, there is a lack of data about its indications in patients with facial asymmetry. In this article, we reviewed recently published articles on the treatment of asymmetric patients using the SFA. Different aspects, including the three-dimensional assessment of stability in different planes, approaches for fabrication of a surgical splint, predictability of the results, skills needed for bimaxillary surgery, indications as the treatment of choice for condylar hyperplasia, and combination with distraction osteogenesis in candidates with severe asymmetries were found to be the main topics discussed for patients presenting with facial asymmetry


2015 ◽  
Vol 16 (10) ◽  
pp. 819-823 ◽  
Author(s):  
HP Raghuveer ◽  
M Hemanth ◽  
MS Rani ◽  
Chathura Hegde ◽  
B Vedavathi ◽  
...  

ABSTRACT Background Optimal orthodontic forces are those which stimulate tooth movement with minimal biological trauma to the tooth, periodontal ligament (PDL) during and alveolar bone. Among various types of tooth movements, extrusion and rotational movements are seen to be associated with the least amount of root resorption and have not been studied in detail. The mechanical behavior of the PDL is known to be nonlinear elastic and thus a nonlinear simulation of the PDL provides precision to the calculated stress values. Therefore in this study, the stress patterns in the PDL were evaluated with extrusion and rotational movements using the nonlinear finite element method (FEM). Materials and methods A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modelling software. Stresses in the PDL were evaluated with extrusive and rotational movements by a 3D FEM using ANSYS software with nonlinear material properties. Results It was observed that with the application of extrusive load, the tensile stresses were seen at the apex whereas the compressive stress was distributed at the cervical margin. With the application of rotational movements, maximum compressi vstress was distributed at the apex and cervical third whereas the tensile stress was distributed on cervical third of the PDL on the lingual surface. Conclusion For rotational and extrusion movements, stress values over the periodontal ligament was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using nonlinear properties. During rotation there are stresses concentrated at the apex, hence due to the concentration of the compressive forces at the apex a clinician must avoid placing heavy stresses during tooth movement. How to cite this article Hemanth M, Raghuveer HP, Rani MS, Hegde C, Kabbur KJ, Chaithra D, Vedavathi B. An Analysis of the Stress Induced in the Periodontal Ligament during Extrusion and Rotation Movements—Part II: A Comparison of vs Nonlinear FEM Linear Study. J Contemp Dent Pract 2015; 16(10):819-823.


Sign in / Sign up

Export Citation Format

Share Document