Bacterial Endotoxin Inhibits Migration, Attachment, and Orientation of Human Gingival Fibroblasts in vitro and Delays Collagen Gel Contraction

1987 ◽  
Vol 66 (9) ◽  
pp. 1449-1455 ◽  
Author(s):  
S. Pitaru ◽  
M. Soldinger ◽  
D. Madgar ◽  
Z. Metzger

The purpose of this study was to assess the effect of endotoxin adsorbed to dental surfaces and to collagen type I on the migration, attachment, and orientation of human gingival fibroblasts (HGF). Transversely cut porcine tooth root slices (RS), 200 μm thick, were prepared. Half of the RS obtained were partially demineralized in EDTA. Half of the demineralized and non-demineralized RS were incubated with 400 μg/mL of endotoxin for 24 hr, whereas the other half were maintained in PBS and served as controls. Experimental and control RS were placed on confluent layers of HFG and cultured for six days. Cell migration toward and cell attachment to the periphery of the RS and the formation of oriented cell sheets were assessed by means of photographic techniques. Additionally, six-day-old cultures were fixed and processed for SEM observation. In separate experiments, the effect of endotoxin on cell attachment to collagen type I and on contraction of three-dimensional collagen gels was assessed. It was found that: (i) bacterial endotoxin inhibited migration and attachment of HGF to both demineralized and non-demineralized cementum and interfered with the development of oriented cellular structure ; (ii) the inhibitory effect was significantly more pronounced for non-demineralized than for demineralized cementum; (iii) the morphology of HGF attached to endotoxin-treated dental surfaces was altered compared with that of their controls; and (iv) bacterial endotoxin inhibited cell attachment to collagen type I and delayed the contraction of collagen gel.

2010 ◽  
Vol 63 (7-8) ◽  
pp. 459-464 ◽  
Author(s):  
Zoran Milosavljevic ◽  
Biljana Ljujic

Introduction. Human dermal tissue is composed of loose and dense connective tissue. Main cell populations are fibroblasts and the dominant fibers are built from collagen type I. The aim of our study was to determine the precise method and time frame for the in vitro production of human dermal equivalent and to investigate the effects of ratio of structural elements and vitamin C on characteristics of the engineered tissue. Material and methods. Primary isolation of the foreskin fibroblasts was performed by explant method and enzymatic dissociation. Various collagen gels were obtained by mixing cells (from 25x103 to 200x103/ml) and neutralized collagen type I (from 2 to 4 mg/ml), with or without vitamin C. The routine histological and morphometrical examination was performed. Results. Enzymatic dissociation of the foreskin proved to be a faster method for production of desired number of fibroblasts (7.5x105 for 4 days). The contraction of collagen-gels started from day one through day seven and was dependent on cell and collagen concentration with higher density gels being contracted to a greater extent, except for the lowest/highest values. The best result was achieved with 100x103 cells and 2 mg/ml collagen. Vitamin C at 50 ?g/ml had no effect on speed of tissue formation. Conclusion. A precise approach that mimic the in vivo conditions is needed for the in vitro production of the dermal equivalent suitable for the possible treatment of tissue defects. Nearly ten days are necessary from the donor tissue dissociation to the final product.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1446 ◽  
Author(s):  
Rizo-Gorrita ◽  
Herráez-Galindo ◽  
Torres-Lagares ◽  
Serrera-Figallo ◽  
Gutiérre-Pérez

Four polymer and ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials from different manufacturers (VITA CAD-Temp (polymethyl methacrylate, PMMA), Celtra Duo (zirconia-reinforced lithium silicate ceramic, ZLS), IPS e.max CAD (lithium disilicate (LS2)), and VITA YZ (yttrium-tetragonal zirconia polycrystal, Y-TZP)) were tested to evaluate the cytotoxic effects and collagen type I secretions on human gingival fibroblasts (HGFs). A total of 160 disc-shaped samples (Ø: 10 ± 2 mm; h: 2 mm) were milled from commercial blanks and blocks. Direct-contact cytotoxicity assays were evaluated at 24, 48, and 72 h, and collagen type I (COL1) secretions were analysed by cell-based ELISA at 24 and 72 h. Both experiments revealed statistically significant differences (p < 0.05). At 24 and 48 h of contact, cytotoxic potential was observed for all materials. Later, at 72 h, all groups reached biologically acceptable levels. LS2 showed the best results regarding cell viability and collagen secretion in all of the time evaluations, while Y-TZP and ZLS revealed intermediate results, and PMMA exhibited the lowest values in both experiments. At 72 h, all groups showed sharp decreases in COL1 secretion regarding the 24-h values. According to the results obtained and the limitations of the present in vitro study, it may be concluded that the ceramic materials revealed a better cell response than the polymers. Nevertheless, further studies are needed to consolidate these findings and thus extrapolate the results into clinical practice.


2014 ◽  
Vol 2 (9) ◽  
pp. 1222-1229 ◽  
Author(s):  
Ricardo M. Gouveia ◽  
Roanne R. Jones ◽  
Ian W. Hamley ◽  
Che J. Connon

Collagen type-I gels incorporating self-assembled Fmoc-RGDS during polymerisation become functionalised, providing a scaffold for enhanced cell attachment and survival, and with improved mechanical and structural properties.


2001 ◽  
Vol 29 (2) ◽  
pp. 179-192 ◽  
Author(s):  
Karen De Smet ◽  
Christophe Cavin ◽  
Antoine Vercruysse ◽  
Vera Rogiers

Albumin secretion, expression of cytochrome P450-dependent mono-oxygenases (CYPs) and their inducibility by well-known inducers were evaluated during 1 week in collagen type I gel sandwich and immobilisation cultures of adult primary rat hepatocytes. Albumin secretion increased during culture and, following an initial decrease, CYP biotransformation activities remained stable for at least 7 days. Better preservation results were observed in the collagen gel sandwich culture than in the immobilisation model. The inducibility of CYPs by β-naphthoflavone (β-NF), 3-methylcholanthrene (3-MC), phenobarbital (PB) and dexamethasone (DEX) was studied in both collagen gel hepatocyte cultures. Exposure of the cells to either 5μM 3-MC or 25μM β-NF, added to the culture medium, resulted in strong increases of CYP1A1/2 activity in both culture models. Treatment with PB (3.2mM) resulted in an increase in the CYP2B activity and a higher hydroxylation of testosterone in the 16α-position (CYP2B1/2 and CYP2C11), the 7α-position (CYP2A1/2), and the 6β-position (CYP3A1). DEX (10μM) markedly increased testosterone 6β- and 7α-hydroxylation. Expression and induction experiments on CYP proteins exposed to these molecules confirmed the results of the CYP activity measurements. The patterns of CYP induction in collagen gel cultures of rat hepatocytes were similar to those observed in vivo. Consequently, collagen gel cultures and, more specifically, collagen gel sandwich cultures seem to be suitable as in vitro models for evaluating xenobiotics as potential inducers of CYP-enzymes.


2013 ◽  
Vol 54 (4-5) ◽  
pp. 260-266 ◽  
Author(s):  
Sema S. Hakki ◽  
Petek Korkusuz ◽  
Nuhan Purali ◽  
Buket Bozkurt ◽  
Mahmut Kus ◽  
...  

1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


Sign in / Sign up

Export Citation Format

Share Document