scholarly journals Energy and the Evolution of Farming Systems: The Potential of Mixed Farming in the Moist Savannah of Sub-Saharan Africa

1996 ◽  
Vol 25 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Mohammad Jabbar

The moist savannah zone in sub-Saharan Africa is regarded as a high potential area for crop and livestock production. Currently, human labour is the principal source of power for crop production and the level of commercial energy use is very low. Agropastoralism and pastoralism are the principal methods of livestock production. Crop-livestock mixed farming, in which manure and animal power are important energy sources in the production process, is only now emerging. The integration of crops and livestock and the implications for agricultural energy sources are related to population pressure and labour intensity, the intensification of crop production with and without livestock, the role of traction in general and in specific niches, the contribution of livestock to the development process in terms of food or other inputs, and the role of public policy and intervention in development.

2021 ◽  
Vol 13 (4) ◽  
pp. 1926 ◽  
Author(s):  
Shiferaw Feleke ◽  
Steven Michael Cole ◽  
Haruna Sekabira ◽  
Rousseau Djouaka ◽  
Victor Manyong

The International Institute of Tropical Agriculture (IITA) has applied the concept of ‘circular bioeconomy’ to design solutions to address the degradation of natural resources, nutrient-depleted farming systems, hunger, and poverty in sub-Saharan Africa (SSA). Over the past decade, IITA has implemented ten circular bioeconomy focused research for development (R4D) interventions in several countries in the region. This article aims to assess the contributions of IITA’s circular bioeconomy focused innovations towards economic, social, and environmental outcomes using the outcome tracking approach, and identify areas for strengthening existing circular bioeconomy R4D interventions using the gap analysis method. Data used for the study came from secondary sources available in the public domain. Results indicate that IITA’s circular bioeconomy interventions led to ten technological innovations (bio-products) that translated into five economic, social, and environmental outcomes, including crop productivity, food security, resource use efficiency, job creation, and reduction in greenhouse gas emissions. Our gap analysis identified eight gaps leading to a portfolio of five actions needed to enhance the role of circular bioeconomy in SSA. The results showcase the utility of integrating a circular bioeconomy approach in R4D work, especially how using such an approach can lead to significant economic, social, and environmental outcomes. The evidence presented can help inform the development of a framework to guide circular bioeconomy R4D at IITA and other research institutes working in SSA. Generating a body of evidence on what works, including the institutional factors that create enabling environments for circular bioeconomy approaches to thrive, is necessary for governments and donors to support circular bioeconomy research that will help solve some of the most pressing challenges in SSA as populations grow and generate more waste, thus exacerbating a changing climate using the linear economy model.


2006 ◽  
Vol 42 (3) ◽  
pp. 259-287 ◽  
Author(s):  
MARY TIFFEN

During the past two decades or so, rural population in Africa has increased slowly while urban population has grown dramatically. The hugely increased urban demand for cereals and pulses (which produce crop residues for livestock) and for livestock products is now the main force stimulating mixed farming systems in the semi-arid and sub-humid areas of sub-Saharan Africa. Grazing land has diminished, crop residues are becoming a more important element in raising livestock and fattening penned livestock has become profitable. The changes in land use, land tenure and the shift of livestock raising southwards in West Africa are illustrated. Farmers' adaptation to rapidly changing markets for their products and the factors of production are illustrated with examples from Senegal, Nigeria, Niger, and, by way of contrast, Kenya. The main challenges this sets to agricultural scientists are described. The livestock element in mixed farming system now requires careful economic analysis and participative research if scientists are to meet the evolving needs of farming as the urban sector enlarges.


2021 ◽  
Author(s):  
Arab Msume ◽  
Giulio Castelli ◽  
Faidess Mwale

<p>Agriculture is critical for human welfare and economic growth in Sub-Saharan Africa (SSA). However, especially rainfed agriculture remains vulnerable to the impacts of climate change in the region. This has generated increasing interest in practices such as Flood Based Farming Systems (FBFS) which enable turning flood water into an opportunity for crop production for smallholder farmers living in flood plains. Despite this interest, there is limited knowledge about farmers’ preference in terms of choices about a specific FBFS and therefore about which specific FBFS needs improvements for realizing its full benefits. The present study characterizes FBFS in Balaka District, Eastern Malawi, in order to develop a pilot approach for gaining knowledge and insights about farmers’ preferences. Data were collected from a sample of 398 questionnaires, direct observations, focus group discussions and key informant interviews, and they were analyzed through SPSS. Results show that Flood Recession Agriculture (FRA) was predominantly practiced (54%), together with other FBFS such as Depression Agriculture (DA), Spate Irrigation (SI) and Dug Outs (DO). Low capital investment and low level of awareness of farmers were referred to be critical for FRA adoption with (p<0.00003) and (p<0.004) respectively. Therefore, investing on FRA, which has already proven to be used in the area, could be a key to improve food security in the area. </p>


2007 ◽  
Vol 36 (3) ◽  
pp. 187-192 ◽  
Author(s):  
Daniel M. Komwihangilo ◽  
Faustin P. Lekule ◽  
George C. Kajembe ◽  
Poul H. Petersen

Local knowledge is an important asset for smallholder farmers who operate differently in diverse crop and livestock production systems in the tropics. Various methods are needed for its acquisition, analysis, storage and communication. While local knowledge of livestock feeds and other resources is abundant, amalgamation of the positive aspects of this knowledge system with that emanating from contemporary scientific approaches is critical yet limited. The merger is desirable so as to achieve improved productivity and sustainability of mixed livestock production systems in Sub-Saharan Africa.


2010 ◽  
Vol 1 (2) ◽  
pp. 125 ◽  
Author(s):  
E. - Hien ◽  
W. T. - Kabore ◽  
D. - Masse ◽  
P. Dugue

Rapid population growth and climatic change threatens the sustainability of natural resources. Farming practices can mitigate environmental change and degradation. The aim of this research conducted in Yatenga region was to describe and to analyse manure practices management. In 2005, a survey was carried out to assess the evolution of farming practices. A survey was initially conducted with a sample of 44 farmers, selected randomly in the three neighbouring villages. Subsequently, 18 farms were selected for in-depth interviews. The grain yield was measured and the different practices of soil and water conservation developed by farmers were compared. According to the enquiries, two practices, called “zaï” and “djengo”, were largely used in cereals production. The “zaï” practice, known as a traditional technique for restoration of degraded soil, is characterized by the capture of runoff by micro-watersheds and a localized organic matter supply at the soil-plant system scale. The “djengo” practice is based on the same principle of the “zaï” practice but was applied on the sandy soil as traditionally “zaï” concerned the degraded and crusty soils. The two practices could increase grain crop production but moreover could limit the risk of crops failure. In addition, our observations also showed that frequent tree regenerations occurred in plots and watersheds where “zaï” or “djengo” practices were used. This study highlights the necessity of better controlling soil, water and organic matter to improve agrosystem sustainability in sub Saharan Africa.


Sign in / Sign up

Export Citation Format

Share Document