scholarly journals Domestic drinking water management: Quality assessment in Oforikrom municipality, Ghana

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110359
Author(s):  
Eugene Appiah-Effah ◽  
Emmanuel Nketiah Ahenkorah ◽  
Godwin Armstrong Duku ◽  
Kwabena Biritwum Nyarko

Drinking water in Ghana is estimated at 79%, but this only represents the proportion of the population with access to improved drinking water sources without regard to the quality of water consumed. This study investigated the quality of household drinking water sources in the Oforikrom municipality where potable water requirements are on the rise due to an ever-increasing population. Both quantitative and qualitative methods were employed in this study. One Hundred households were randomly selected and interviewed on the available options for drinking water and household water treatment and safe storage. A total of 52 points of collection (POC) and 97 points of use (POU) water samples from households were collected for physicochemical and microbial water quality analysis. Amongst the available drinking water options, sachet water (46%) was mostly consumed by households. Water quality analysis revealed that the physicochemical parameters of all sampled drinking water sources were within the Ghana Standards Authority (GSA) recommended values expected for pH (ranging from 4.50 to 7.50). For the drinking water sources, bottled (100%, n = 2) and sachet water (91%, n = 41) showed relatively good microbial water quality. Generally, POC water samples showed an improved microbial water quality in comparison to POU water samples. About 38% ( n = 8) of the households practicing water quality management, were still exposed to unsafe drinking water sources. Households should practice good water quality management at the domestic level to ensure access to safe drinking water. This may include the use of chlorine-based disinfectants to frequently disinfect boreholes, wells and storage facilities at homes.

2021 ◽  
Author(s):  
Suntorn Sudsandee ◽  
Natthathida Patthanacheroen

Abstract Hill tribe villages are located in mountainous and remote areas. Primary water supply and drinking water sources are mountain water from a small weir on the mountain. Most mountain waters found turbidity higher than 1 NTU, and water quality was unclean to use and drink. This research applied different concentrations of alum doses to observe turbidity reduction. Optimum alum does apply to reduce turbidity for mountain water samples from Hmong, Karen, Lahu, and Lisu for three seasons. The optimum alum dose is between 20 - 40 mg/l in rainy seasons and 10 – 40 mg/l in summer. The cold season was low optimum alum dose at 10 mg/l for all hill tribe villages. Therefore, alum coagulants can be used to treat the mountain water supply and drinking that can implement the main problem of mountain water in hill tribe village.


Author(s):  
Sadiya Atiku ◽  
Chukwuma C. Ogbaga ◽  
Olatunbosun O. Alonge ◽  
Onyinye F. Nwagbara

Diseases caused by contaminated water consumption and poor hygiene are among the leading cause of death in children, the elderly and people with compromised immune system. The present study aims to assess the drinking water quality of some selected drinking water sources in the chosen study area using water quality index (WQI). Samples of drinking waters were collected from four different sources—river, sachet (packaged), borehole and well in Jabi, Abuja, Nigeria for physicochemical and bacteriological analyses using standard methods. With the exception of pH, river water had the highest content of all the physicochemical parameters examined. Some of the physicochemical parameters such as temperature and pH determined in this study were mostly within the World Health Organization (WHO) standard. The bacteriological analyses revealed that the highest total viable counts of 1.54 (0.12) × 102 (cfu/mL) were obtained in the river sample while the least values of 0.03 (0.00) × 102 (cfu/mL) were obtained in the sachet water. Three bacterial isolates of Escherichia coli, Pseudomonas spp and Aeromonas spp were isolated from well water while Pseudomonas spp and Proteus spp were isolated from borehole water. All other bacteria were isolated from the river. The study demonstrates that the safest drinking water source in Idu district, Jabi, Abuja is the sachet/packaged water while the least safe is the river water due to the presence of significant opportunistic pathogens. The results of this study are beneficial for water quality management and could be used for low-cost effective water quality assessment in Jabi.


2018 ◽  
Vol 5 (4) ◽  
pp. 221-229
Author(s):  
Sisay Derso Mengesha ◽  
Abel Weldetinsae ◽  
Kirubel Tesfaye ◽  
Girum Taye

Background: This retrospective study aimed to investigate the physicochemical properties of drinking water sources in Ethiopia and compare the water quality with the health-based target. For this purpose, the water quality database of Ethiopian Public Health Institute (EPHI) from 2010 to 2016 was used. Methods: The concentration and other properties of the water samples were analyzed according to the Standard Methods of Water and Wastewater analysis. Quality control and quality assurance were applied in all stages following our laboratory standard operation procedures (SOPs). Results: The concentration of the selected parameters varied based on the type of water sources. The mean concentration of turbidity was higher in spring water (21.3 NTU) compared to tap (12.6 NTU) and well (3.9 NTU) water sources. The mean concentration of total dissolved solids (TDS), electrical conductivity (EC), sodium (Na+), and sulfate (SO4 -2) was found to be higher in spring water sources than tap and well water sources. Comparably, the concentration of hardness, calcium, and magnesium was found to be higher in well water sources than spring and tap water sources. The bivariate analysis indicated that out of 845 analyzed water samples, more than 50% of the samples from Oromia region had turbidity, pH, TDS, hardness, Ca++, K+, and Na+ within an acceptable limit. In addition, the logistic regression analysis showed that water quality parameters were strongly associated with the type of water sources and regional administration at P<0.05. Conclusion: More than 80% of the samples analyzed from drinking water sources were in agreement with WHO guidelines and national standards. However, the remaining 20% specifically, pH (25%), calcium (20%), hardness (18.1%), TDS (15.5%), and turbidity (13.3%) analyzed from improved water sources did not comply with these recommendations. Due to objectionable or unpleasant taste, people may force to look for alternative unprotected water sources that lead to health concerns.


Author(s):  
Valentine Mukanyandwi ◽  
Alishir Kurban ◽  
Egide Hakorimana ◽  
Lamek Nahayo ◽  
Gabriel Habiyaremye ◽  
...  

Abstract The quality of drinking water source remains as a major concern in areas of developing and underdeveloped countries worldwide. The treatment and supply of drinking water in Rwanda are carried out by Water and Sanitation Corporation, a state-owned public company. However, it is not able to supply water to all households. Consequently, the non-serviced households depend on natural water sources, like springs, to meet their water requirements. Nevertheless, the water quality in these springs is scarcely known. Therefore, this study assessed and compared metal elements in drinking water sources in the dry and rainy seasons in 2017 using the contamination degree, metal index, and geographic information systems to reveal the spatial distribution of water quality within the considered water sources of springs in Rwanda. The samples were collected monthly from nine water sources of springs and the measured elements are aluminium, calcium, copper, iron, manganese, and zinc. The metal index indicated that during the dry season and rainy season, the sites of Kibungo (1.10 and 1.26) and Kinigi (1.01 and 1.54) have assessed a metal index which is higher than 1. Thus, the water quality of those sites was getting the threshold of warning. The analysis indicated that pollutants are easily transported into water bodies during the rainy season in urban and rural areas to a greater extent than during the dry season .


2017 ◽  
Vol 13 (2) ◽  
pp. 111-119
Author(s):  
Lela Uyara ◽  
Pieter Kunu ◽  
Silwanus M Talakua

The study aims to determine the quality of clean water in the villages of Wainitu, Batumerah, Amahusu and Halong by comparing the result of water quality analysis with water quality standard. Water quality analysis includes Physiscal, Chemical, and Microbiological parameters. This research uses descriptive method, this method describes systematics, accurate about facts and characteristic of the quality of clean water of each research location. The results showed that the source of clean water in the village of Batumerah did not meet the standard of clean water quality standards indicated by the number of E. coli and the high total coliform.  Keywords: standard quality of clean water, water quality, Wainitu, Batumerah, Amahusu and Halong villages   ABSTRAK Penelitian yang bertujuan untuk menetapkan kualitas air bersih di Desa Wainitu, Batumerah, Amahusu dan Halong, dengan membandingkan hasil analisis kualitas air dengan standar baku mutu air bersih. Analisis kualitas air meliputi parameter fisika, kimia dan mikrobiologi. Penelitian ini menggunakan metode deskriptif; metode ini menggambarkan sicara sistematis, akurat, fakta dan karakteristik mengenai kualitas air bersih di masing-masing lokasi penelitian. Hasil penelitian menunjukkan bahwa sumber air bersih di Desa Batumerah tidak memenuhi standar baku mutu air bersih yang ditunjukkan oleh jumlah E. coli dan total Koliform yang tinggi. Kata Kunci: baku mutu air bersih, Desa Wainitu, Batumerah, Amahusu dan Halong, kualitas air


2017 ◽  
Vol 11 ◽  
pp. 117863021773553 ◽  
Author(s):  
Joab Odhiambo Okullo ◽  
Wilkister Nyaora Moturi ◽  
George Morara Ogendi

Water SA ◽  
2015 ◽  
Vol 41 (5) ◽  
pp. 691
Author(s):  
Tatenda G Chirenda ◽  
Sunitha C Srinivas ◽  
R Tandlich

2020 ◽  
Author(s):  
Francis Hamwiinga ◽  
Chisala D. Meki ◽  
Patricia Mubita ◽  
Hikabasa Halwiindi

Abstract Background: One of the factors impeding access to safe water is water pollution. Of particular concern is heavy metal contamination of water bodies. This study was aimed at determining the levels of heavy metals in drinking water sources of Chingola District of Zambia. Methods: A cross sectional study was employed. A total of 60 water samples were collected. Thirsty (30) samples were collected in the dry season in the month of October 2016 and another 30 in the wet season in the months of February and March, 2017. For each season 10 water samples were collected from each of the three water sources. i.e. Tap water, Urban ground water sources and Rural ground water sources. Heavy metal analysis was done using Atomic Absorption Spectrophotometer (AAS).Results: This study revealed that the concentrations of Iron, Manganese, Lead, Nickel and Arsenic were beyond maximum permissible levels in various water sources. Combined averages for both dry and wet seasons were as follows: Iron: 2.3, Copper: 0.63, Cobalt: 0.02, Manganese: 0.36, Lead: 0.04, Zinc:3.2, Nickel: 0.03, Arsenic: 0.05. Chromium and Cadmium were below detection limit in all water samples. The median concentrations of iron, arsenic, copper, manganese in drinking water from the Tap, rural and urban ground water sources were different, and this difference was statistically significant (p<0.05). The median concentrations of arsenic, nickel, manganese and cobalt were different between dry and wet season, and this difference was statistically significant (p<0.05).Conclusions: Sources of heavy metals in water seems to be both natural and from human activities. The concentration of heavy metals in different water sources in this study was found to be above the recommended levels. This calls for improvement in water monitoring to protect the health of the public. Therefore, there is need for continuous monitoring of heavy metals in drinking water sources by regulatory authorities.


Sign in / Sign up

Export Citation Format

Share Document