An enhanced quantum-inspired gravitational search algorithm for color prediction based on the absorption spectrum

2020 ◽  
pp. 004051752097700
Author(s):  
Zehai Gao ◽  
Yan Zhang ◽  
Shisheng Zhou ◽  
Wei Lyu

Spot color is widely applied to printing and packing in modern industry, which can satisfy the individualization requirements and express the emotion of products. Color prediction is the core technique for spot color restoration. In this paper, a method that combines the least squares method and gravitation search algorithm is proposed to address the color prediction by using the absorption spectrum. Firstly, the spectral transmittance of the thin film with high transmission and low reflectance characteristics is researched to find the absorbance. Secondly, the least squares method is used to ascertain the primary colors of the spot color. Thirdly, an enhanced quantum gravitation search algorithm is designed to predict the spot color. The predicted results on the 30 spot colors show that the proposed method has higher accuracy in comparison with the three existed methods. The color differences between the prepared spot colors and the reproduced spot colors are all less than 3, in which 75% of the color differences are less 1 and 35% of the color differences are less 0.1. All the results confirm that the proposed method can predict the spot color accurately.

2020 ◽  
pp. 000370282097751
Author(s):  
Xin Wang ◽  
Xia Chen

Many spectra have a polynomial-like baseline. Iterative polynomial fitting (IPF) is one of the most popular methods for baseline correction of these spectra. However, the baseline estimated by IPF may have substantially error when the spectrum contains significantly strong peaks or have strong peaks located at the endpoints. First, IPF uses temporary baseline estimated from the current spectrum to identify peak data points. If the current spectrum contains strong peaks, then the temporary baseline substantially deviates from the true baseline. Some good baseline data points of the spectrum might be mistakenly identified as peak data points and are artificially re-assigned with a low value. Second, if a strong peak is located at the endpoint of the spectrum, then the endpoint region of the estimated baseline might have significant error due to overfitting. This study proposes a search algorithm-based baseline correction method (SA) that aims to compress sample the raw spectrum to a dataset with small number of data points and then convert the peak removal process into solving a search problem in artificial intelligence (AI) to minimize an objective function by deleting peak data points. First, the raw spectrum is smoothened out by the moving average method to reduce noise and then divided into dozens of unequally spaced sections on the basis of Chebyshev nodes. Finally, the minimal points of each section are collected to form a dataset for peak removal through search algorithm. SA selects the mean absolute error (MAE) as the objective function because of its sensitivity to overfitting and rapid calculation. The baseline correction performance of SA is compared with those of three baseline correction methods: Lieber and Mahadevan–Jansen method, adaptive iteratively reweighted penalized least squares method, and improved asymmetric least squares method. Simulated and real FTIR and Raman spectra with polynomial-like baselines are employed in the experiments. Results show that for these spectra, the baseline estimated by SA has fewer error than those by the three other methods.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yudong Xia ◽  
Ju Zhao ◽  
Qiang Ding ◽  
Aipeng Jiang

Operational faults in centrifugal chillers will lead to high energy consumption, poor indoor thermal comfort, and low operational safety, and thus it is of significance to detect and diagnose the anomalies timely and effectively, especially for those at their incipient stages. The least squares support vector machine (LSSVM) has been regarded as an effective algorithm for multiclass classification. One of the most difficult issues in LSSVM is parameter tuning. Therefore, this paper reports a development of a gravitational search algorithm (GSA) optimized LSSVM method for incipient fault diagnosis in centrifugal chillers. Considering the inadequacies of conventional principle component analysis (PCA) algorithm for nonlinear data transformation, kernel principle component analysis (KPCA) was firstly employed to reduce the dimensionality of the original input data. Secondly, an optimized “one against one” multi-class LSSVM classifier was developed and its penalty constant and kernel bandwidth were tuned by GSA. Based on the fault samples of seven typical faults at their incipient stages in chillers from ASHRAE RP 1043, the proposed GSA optimized LSSVM fault diagnostic model was trained and validated. For the purpose of demonstrating the priority of the proposed fault diagnosis method, the obtained results were compared to that of using the LSSVM classifier optimized by another two algorithms, namely, the conventional cross-validation method and particle swarm optimizer. Results showed that the best fault diagnosis performance could be achieved using the proposed GSA-LSSVM classifier. The overall average fault diagnosis accuracy for the least severity faults was reported over 95%.


1980 ◽  
Vol 59 (9) ◽  
pp. 8
Author(s):  
D.E. Turnbull

2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


2016 ◽  
Vol 3 (4) ◽  
pp. 1-11
Author(s):  
M. Lakshmikantha Reddy ◽  
◽  
M. Ramprasad Reddy ◽  
V.C. Veera Reddy ◽  
◽  
...  

2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Maysam Abedi

The presented work examines application of an Augmented Iteratively Re-weighted and Refined Least Squares method (AIRRLS) to construct a 3D magnetic susceptibility property from potential field magnetic anomalies. This algorithm replaces an lp minimization problem by a sequence of weighted linear systems in which the retrieved magnetic susceptibility model is successively converged to an optimum solution, while the regularization parameter is the stopping iteration numbers. To avoid the natural tendency of causative magnetic sources to concentrate at shallow depth, a prior depth weighting function is incorporated in the original formulation of the objective function. The speed of lp minimization problem is increased by inserting a pre-conditioner conjugate gradient method (PCCG) to solve the central system of equation in cases of large scale magnetic field data. It is assumed that there is no remanent magnetization since this study focuses on inversion of a geological structure with low magnetic susceptibility property. The method is applied on a multi-source noise-corrupted synthetic magnetic field data to demonstrate its suitability for 3D inversion, and then is applied to a real data pertaining to a geologically plausible porphyry copper unit.  The real case study located in  Semnan province of  Iran  consists  of  an arc-shaped  porphyry  andesite  covered  by  sedimentary  units  which  may  have  potential  of  mineral  occurrences, especially  porphyry copper. It is demonstrated that such structure extends down at depth, and consequently exploratory drilling is highly recommended for acquiring more pieces of information about its potential for ore-bearing mineralization.


Sign in / Sign up

Export Citation Format

Share Document