Cotton Fiber Fineness Distributions and Their Effects on the Tenacities of Randomly Sampled HVI Tapered Beards: Linear Density Effects

1993 ◽  
Vol 63 (12) ◽  
pp. 737-744 ◽  
Author(s):  
K.E. Duckett ◽  
Z. Zhou ◽  
R.S. Krowicki ◽  
P.E. Sasser
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Baneswar Sarker ◽  
Shankar Chakraborty

Purpose Like all other natural fibers, the physical properties of cotton also vary owing to changes in the related genetic and environmental factors, which ultimately affect both the mechanics involved in yarn spinning and the quality of the yarn produced. However, information is lacking about the degree of influence that those properties impart on the spinnability of cotton fiber and the strength of the final yarn. This paper aims to discuss this issue. Design/methodology/approach This paper proposes the application of discriminant analysis as a multivariate regression tool to develop the causal relationships between six cotton fiber properties, i.e. fiber strength (FS), fiber fineness (FF), upper half mean length (UHML), uniformity index (UI), reflectance degree and yellowness and spinning consistency index (SCI) and yarn strength (YS) along with the determination of the respective contributive roles of those fiber properties on the considered dependent variables. Findings Based on the developed discriminant function, it can be revealed that FS, UI, FF and reflectance degree are responsible for higher YS. On the other hand, with increasing values of UHML and fiber yellowness, YS would tend to decrease. Similarly, SCI would increase with higher values of FS, UHML, UI and reflectance degree, and its value would decrease with increasing FF and yellowness. Originality/value The discriminant functions can effectively envisage the contributive role of each of the considered cotton fiber properties on SCI and YS. The discriminant analysis can also be adopted as an efficient tool for investigating the effects of various physical properties of other natural fibers on the corresponding yarn characteristics.


1988 ◽  
Vol 58 (8) ◽  
pp. 433-438 ◽  
Author(s):  
J. K. Dever ◽  
J. R. Gannaway ◽  
R. V. Baker

Seven sources of cotton representing a wide range of fiber properties were roller ginned, saw ginned, or saw ginned plus processed through tandem saw lint cleaners or through an aggressive carding-type cleaner (Cottonmaster1). Lint cleaner induced changes in fiber length and nep count were compared to fiber property measurements from roller ginned samples. Fiber length deterioration from saw ginning was negatively correlated with fiber strength. Fiber breakage in lint cleaning was positively correlated with fiber fineness. Resistance to fiber length damage in ginning was explained best by fiber strength and fineness, or an estimate of individual fiber strength. Initial and final nep level were related to fineness, nonlint content, and upper quartile length, but an increase in neps due to lint cleaning had no significant relationship to fiber properties.


1977 ◽  
Vol 47 (8) ◽  
pp. 526-530 ◽  
Author(s):  
S. G. Stephens

In previous studies methods were developed for calibrating the Arealometer readings A and D to optically-determined measurements of standard cotton fiber samples. In this paper similar principles are applied to the PH and PL readings obtained from the Shirley I.I.C. Fineness/Maturity Tester, using the same standards and optical measurements. The I.I.C. Tester is already calibrated to give the following equivalents: Micronaire, Causticaire, percent maturity, and linear density. The interrelations of these equivalents with appropriate optical measurements have been investigated.


1979 ◽  
Vol 49 (9) ◽  
pp. 512-516 ◽  
Author(s):  
S.G. Nayar ◽  
V.G. Munshi ◽  
V. Syndaram
Keyword(s):  

2021 ◽  
Author(s):  
Ian DeBois ◽  
Esha Agarwal ◽  
Ashish Kapoor ◽  
Kavita Mathur

Abstract The purpose of this parametric design of experiments was to identify and summarize how the influence of knit structure (single jersey vs. terry), fiber composition (polyester vs. cotton), fiber linear density (30/1 Ne vs. 18/1 Ne & 1/150/34 vs. 2/150/34), and yarn type (filament vs. spun) affected the frictional profile across the sock-skin interface, and then relate these factors to friction blister incidence. Friction testing trials were completed against both a polypropylene probe and a synthetic skin material (Lorica soft®) to determine if there was a difference in friction based on interface interaction. Friction testing was completed by sliding a probe across the inside bottom surface of the sock (the part that is usually in-contact with the bottom of the foot) while instantaneously measuring the frictional force every tenth of a second. For both trials (plastic probe and synthetic skin), in the dry condition, knit structure was found to be the most prominate fabric parameter affecting the frictional force experienced at the sock-skin interface. It was also determined that fiber linear density, and yarn type are tertiary factors affecting the frictional force measured at the sock-skin interface. Finally, in the dry state, it was determined that fiber composition had seemingly no effect on the frictional force experienced at the sock-skin interface.


1984 ◽  
Vol 26 (1-3) ◽  
pp. 55-71 ◽  
Author(s):  
P. VASSEUR ◽  
T.H. NGUYEN ◽  
J.P. CALTAGIRONET ◽  
B. CHANDRA SHEKAR

2016 ◽  
Vol 8 (2) ◽  
pp. 46 ◽  
Author(s):  
Nacoulima Lalaissa Nafissatou ◽  
Diouf Fatimata Hassedine ◽  
Konan N’guessan Olivier ◽  
Mergeai Guy

<p>To improve cotton fiber fineness, the (<em>Gossypium hirsutum</em> L. × <em>Gossypium longicalyx </em>Hutch. &amp; Lee)² allohexaploid and the [(<em>Gossypium hirsutum</em> L. × <em>Gossypium thurberi </em>Tod.)² × <em>G. longicalyx</em>] allotetraploid were backcrossed to <em>G. hirsutum</em> to produce introgressed genetic stocks. The ribbon width (RW) of 600 swelled fibers produced by the hybrids, their parents, and their backcross progeny were analyzed for each compared genotype using an optical microscope. The RWs varied between 6.41±2.15 µm for <em>G. longicalyx</em> to 17.45±2.98 µm for the <em>G. hirsutum</em> parent cultivar C2. Fibers produced by the trispecific hybrids and their progeny were finer than the bispecific hybrid material. For the introgressed stocks, the lowest RWs were observed for the trispecific hybrid (10.79±2.14 µm) and certain backcross progenies (between 11.98±1.27 µm to 12.71±1.61 µm). The allohexaploid RW was 13.58±1.41 µm. One of its tetraploid progeny produced approximately the same value (13.94±2.48 µm). These results show that <em>G. longicalyx </em>is a potential genetic stock for cotton fiber fineness improvement. The genetic stocks produced are valuable materials for improve the fineness of cotton fiber.</p>


Sign in / Sign up

Export Citation Format

Share Document