When the Music’s No Good: Rhythms Prompt Interactional Synchrony But Impair Affective Communication Outcomes

2021 ◽  
pp. 009365022110159
Author(s):  
Annett Schirmer ◽  
Clive Lo ◽  
Maria Wijaya

Spontaneous motion synchrony between interaction partners benefits the interaction. Here we probed how musical rhythms, which are highly temporally organized, modulate this process. We video-taped conversations held in silence or with an auditory background that was metrical and regular (one measure looped), metrical and irregular (different measures in random order), non-metrical and regular, or non-metrical and irregular. Motion time-series derived from the videos entered a cross-wavelet coherence analysis showing that more musical rhythms amplified rhythm-relevant motion frequencies at the level of the individual and facilitated social synchronizing at the level of the dyad. Yet, we also observed rhythm-specific motion interference effects and reduced conversation pleasantness when compared with silence. These results indicate that musical rhythms, perhaps by imposing a temporally rigid mode of synchronizing, hinder rather than further ongoing social processes. Silence or sounds with little temporal organization and predictability seem preferable as a backdrop for interactional exchange.

Author(s):  
Scott Marek ◽  
Joshua S. Siegel ◽  
Evan M. Gordon ◽  
Ryan V. Raut ◽  
Caterina Gratton ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Daniele Martinelli ◽  
Gloria Castellazzi ◽  
Roberto De Icco ◽  
Ana Bacila ◽  
Marta Allena ◽  
...  

In this study we used nitroglycerin (NTG)-induced migraine attacks as a translational human disease model. Static and dynamic functional connectivity (FC) analyses were applied to study the associated functional brain changes. A spontaneous migraine-like attack was induced in five episodic migraine (EM) patients using a NTG challenge. Four task-free functional magnetic resonance imaging (fMRI) scans were acquired over the study: baseline, prodromal, full-blown, and recovery. Seed-based correlation analysis (SCA) was applied to fMRI data to assess static FC changes between the thalamus and the rest of the brain. Wavelet coherence analysis (WCA) was applied to test time-varying phase-coherence changes between the thalamus and salience networks (SNs). SCA results showed significantly FC changes between the right thalamus and areas involved in the pain circuits (insula, pons, cerebellum) during the prodromal phase, reaching its maximal alteration during the full-blown phase. WCA showed instead a loss of synchronisation between thalami and SN, mainly occurring during the prodrome and full-blown phases. These findings further support the idea that a temporal change in thalamic function occurs over the experimentally induced phases of NTG-induced headache in migraine patients. Correlation of FC changes with true clinical phases in spontaneous migraine would validate the utility of this model.


2014 ◽  
Vol 35 (5) ◽  
pp. 777-791 ◽  
Author(s):  
Zengyong Li ◽  
Ming Zhang ◽  
Ruofei Cui ◽  
Qing Xin ◽  
Lu Liqian ◽  
...  

Neuron ◽  
2018 ◽  
Vol 100 (4) ◽  
pp. 977-993.e7 ◽  
Author(s):  
Scott Marek ◽  
Joshua S. Siegel ◽  
Evan M. Gordon ◽  
Ryan V. Raut ◽  
Caterina Gratton ◽  
...  

The Holocene ◽  
2014 ◽  
Vol 24 (11) ◽  
pp. 1503-1514 ◽  
Author(s):  
Niina Kuosmanen ◽  
Keyan Fang ◽  
Richard HW Bradshaw ◽  
Jennifer L Clear ◽  
Heikki Seppä

Fossil pollen, conifer stomata, and charcoal records for the last 10,000 years were studied from three small hollow sites (Larix Hollow, Mosquito Hollow, and Olga Hollow) located at the modern western range limit of Siberian larch ( Larix sibirica) in northwestern Russia to investigate the role of forest fires in stand-scale dynamics of taiga vegetation. Wavelet coherence analysis was utilized to reveal the significance of fire on the vegetation composition at different timescales by assessing the phase and strength of the relationship between forest fires and most common boreal tree taxa in a time–frequency window. Pollen and stomata data show that all of the modern-day common tree taxa, including Norway spruce ( Picea abies) and Siberian larch, have been present in the study region since the early Holocene. The absence of charcoal layers at Mosquito Hollow suggests that this site has acted as a fire-free refugium with continuous dominance of spruce throughout the Holocene. Meanwhile, the Larix Hollow record indicates frequent local fire events and as a consequence, a more variable tree species composition. The wavelet coherence results show that the impact of forest fires on vegetation varies from short-term (<200-year periods) changes in individual tree taxa to long-term (400–800 years) changes in forest composition, such as the expansion of spruce population after local high-intensity fires around 7500–7000 cal. yr BP and the increase in abundance of birch and alder during periods of high fire frequency. Our results suggest that Holocene fire histories can be markedly different within a small geographical area, demonstrating the importance of site-specific factors in the local fire regime in the unmanaged taiga forest.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1863 ◽  
Author(s):  
Teresita Canchala ◽  
Wilfredo Alfonso-Morales ◽  
Wilmar Loaiza Cerón ◽  
Yesid Carvajal-Escobar ◽  
Eduardo Caicedo-Bravo

Given that the analysis of past monthly rainfall variability is highly relevant for the adequate management of water resources, the relationship between the climate-oceanographic indices, and the variability of monthly rainfall in Southwestern Colombia at different time scales was chosen as the research topic. It should also be noted that little-to-no research has been carried out on this topic before. For the purpose of conducting this research, we identified homogeneous rainfall regions while using Non-Linear Principal Component Analysis (NLPCA) and Self-Organizing Maps (SOM). The rainfall variability modes were obtained from the NLPCA, while their teleconnection in relation to the climate indices was obtained from Pearson’s Correlations and Wavelet Transform. The regionalization process clarified that Nariño has two regions: the Andean Region (AR) and the Pacific Region (PR). The NLPCA showed two modes for the AR, and one for the PR, with an explained variance of 75% and 48%, respectively. The correlation analyses between the first nonlinear components of AR and PR regarding climate indices showed AR high significant positive correlations with Southern Oscillation Index (SOI) index and negative correlations with El Niño/Southern Oscillation (ENSO) indices. PR showed positive ones with Niño1 + 2, and Niño3, and negative correlations with Niño3.4 and Niño4, although their synchronous relationships were not statistically significant. The Wavelet Coherence analysis showed that the variability of the AR rainfall was influenced principally by the Niño3.4 index on the 3–7-year inter-annual scale, while PR rainfall were influenced by the Niño3 index on the 1.5–3-year inter-annual scale. The El Niño (EN) events lead to a decrease and increase in the monthly rainfall on AR and PR, respectively, while, in the La Niña (LN) events, the opposite occurred. These results that are not documented in previous studies are useful for the forecasting of monthly rainfall and the planning of water resources in the area of study.


2018 ◽  
Vol 10 (1) ◽  
pp. 88-100 ◽  
Author(s):  
Gbenga J. Abiodun ◽  
Peter J. Witbooi ◽  
Kazeem O. Okosun ◽  
Rajendra Maharaj

Introduction: The reasons for malaria resurgence mostly in Africa are yet to be well understood. Although the causes are often linked to regional climate change, it is important to understand the impact of climate variability on the dynamics of the disease. However, this is almost impossible without adequate long-term malaria data over the study areas. Methods: In this study, we develop a climate-based mosquito-human malaria model to study malaria dynamics in the human population over KwaZulu-Natal, one of the epidemic provinces in South Africa, from 1970-2005. We compare the model output with available observed monthly malaria cases over the province from September 1999 to December 2003. We further use the model outputs to explore the relationship between the climate variables (rainfall and temperature) and malaria incidence over the province using principal component analysis, wavelet power spectrum and wavelet coherence analysis. The model produces a reasonable fit with the observed data and in particular, it captures all the spikes in malaria prevalence. Results: Our results highlight the importance of climate factors on malaria transmission and show the seasonality of malaria epidemics over the province. Results from the principal component analyses further suggest that, there are two principal factors associated with climates variables and the model outputs. One of the factors indicate high loadings on Susceptible, Exposed and Infected human, while the other is more correlated with Susceptible and Recovered humans. However, both factors reveal the inverse correlation between Susceptible-Infected and Susceptible-Recovered humans respectively. Through the spectrum analysis, we notice a strong annual cycle of malaria incidence over the province and ascertain a dominant of one year periodicity. Consequently, our findings indicate that an average of 0 to 120-day lag is generally noted over the study period, but the 120-day lag is more associated with temperature than rainfall. This is consistence with other results obtained from our analyses that malaria transmission is more tightly coupled with temperature than with rainfall in KwaZulu-Natal province.


Sign in / Sign up

Export Citation Format

Share Document