Neuro-fuzzy iterative learning control for 4-poster test rig

2020 ◽  
Vol 42 (12) ◽  
pp. 2262-2275
Author(s):  
Ufuk Dursun ◽  
Galip Cansever ◽  
İlker Üstoğlu

In this paper, a new control method is presented for the 4-poster test systems. The primary aim of the paper is to improve the convergence speed and decrease the error rate for model-based iterative learning control (ILC), a widely used method as a tracking control. First, the dynamic equations of the system are generated, and the control problem is formulated. Then, an inverse model of the system is established directly through the adaptive neuro-fuzzy inference system (ANFIS) with auxiliary parameter (piston position) as a serial combination of two sub-models. In order to construct a neuro-fuzzy ILC (NFILC) structure, these sub-models are integrated into the neuro-fuzzy inverse controller (NFIC). Because of this new structure, the modified ILC rule has two layers. In the first layer, the controlled parameter, namely, the acceleration is iterated, whereas, in the second layer, the auxiliary parameter is iterated. The outcomes of the proposed control method are scrutinized by testing through a numerical simulation. Finally, it is demonstrated that the modified ILC rule dramatically increase the convergence speed and reduce the final error rate.

Author(s):  
Tatang Rohana Cucu

Abstract - The process of admitting new students is an annual routine activity that occurs in a university. This activity is the starting point of the process of searching for prospective new students who meet the criteria expected by the college. One of the colleges that holds new student admissions every year is Buana Perjuangan University, Karawang. There have been several studies that have been conducted on predictions of new students by other researchers, but the results have not been very satisfying, especially problems with the level of accuracy and error. Research on ANFIS studies to predict new students as a solution to the problem of accuracy. This study uses two ANFIS models, namely Backpropagation and Hybrid techniques. The application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model in the predictions of new students at Buana Perjuangan University, Karawang was successful. Based on the results of training, the Backpropagation technique has an error rate of 0.0394 and the Hybrid technique has an error rate of 0.0662. Based on the predictive accuracy value that has been done, the Backpropagation technique has an accuracy of 4.8 for the value of Mean Absolute Deviation (MAD) and 0.156364623 for the value of Mean Absolute Percentage Error (MAPE). Meanwhile, based on the Mean Absolute Deviation (MAD) value, the Backpropagation technique has a value of 0.5 and 0.09516671 for the Mean Absolute Percentage Error (MAPE) value. So it can be concluded that the Hybrid technique has a better level of accuracy than the Backpropation technique in predicting the number of new students at the University of Buana Perjuangan Karawang.   Keywords: ANFIS, Backpropagation, Hybrid, Prediction


Author(s):  
Wanqiang Xi ◽  
Yaoyao Wang ◽  
Bai Chen ◽  
Hongtao Wu

For the repetitive motion control, inaccurate model, and other issues of industrial robots, this article presents a novel control method that the proportion differentiation-type iterative learning parameters are self-tuning based on artificial bee colony algorithm. Considering the influence of the numerical value of iterative learning parameters on the control system, especially in the early iteration, the control effect is not satisfactory. Thus, the artificial bee colony algorithm is introduced in this article. Using bee colony as search unit, the parameters in iterative learning are optimized through the exchange of information and the survival of fittest between them. And then the optimized results are returned to iterative learning control algorithm. Finally, the digital simulation of a two-degrees-of-freedom manipulator and the experimental verification of a cable-driven robot with its first two joints are carried out. The results show that the iterative learning control based on the artificial bee colony algorithm has faster convergence and better control effect than the iterative learning control with fixed parameters.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 24 ◽  
Author(s):  
Jian Dong ◽  
Bin He

Due to the under-actuated and strong coupling characteristics of quadrotor aircraft, traditional trajectory tracking methods have low control precision, and poor anti-interference ability. A novel fuzzy proportional-interactive-derivative (PID)-type iterative learning control (ILC) was designed for a quadrotor unmanned aerial vehicle (UAV). The control method combined PID-ILC control and fuzzy control, so it inherited the robustness to disturbances and system model uncertainties of the ILC control. A new control law based on the PID-ILC algorithm was introduced to solve the problem of chattering caused by an external disturbance in the ILC control alone. Fuzzy control was used to set the PID parameters of three learning gain matrices to restrain the influence of uncertain factors on the system and improve the control precision. The system stability with the new design was verified using Lyapunov stability theory. The Gazebo simulation showed that the proposed design method creates effective ILC controllers for quadrotor aircraft.


2004 ◽  
Vol 126 (4) ◽  
pp. 916-920 ◽  
Author(s):  
Huadong Chen ◽  
Ping Jiang

An adaptive iterative learning control approach is proposed for a class of single-input single-output uncertain nonlinear systems with completely unknown control gain. Unlike the ordinary iterative learning controls that require some preconditions on the learning gain to stabilize the dynamic systems, the adaptive iterative learning control achieves the convergence through a learning gain in a Nussbaum-type function for the unknown control gain estimation. This paper shows that all tracking errors along a desired trajectory in a finite time interval can converge into any given precision through repetitive tracking. Simulations are carried out to show the validity of the proposed control method.


2016 ◽  
Vol 39 (11) ◽  
pp. 1749-1760 ◽  
Author(s):  
Jiankun Sun ◽  
Shihua Li

This paper develops a systematic iterative learning control (ILC) strategy for systems with mismatched disturbances. The systems with mismatched disturbances are more general and widely exist in practical engineering, where the standard disturbance observer based ILC method is no longer available. To this end, this note proposes a novel ILC scheme based on the disturbance observer, which consists of two parts: a baseline ILC term for stabilizing the nominal system and a disturbance compensation term for attenuating mismatched disturbances by choosing an appropriate compensation gain. It is proven that the performance of the closed-loop system is effectively improved. Finally, the simulation analysis for a permanent-magnet synchronous motor servo system demonstrates the feasibility and efficacy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document