Design and application of an optimally tuned PID controller for DC motor speed regulation via a novel hybrid Lévy flight distribution and Nelder–Mead algorithm

Author(s):  
Davut Izci

This paper deals with the design of an optimally performed proportional–integral–derivative (PID) controller utilized for speed control of a direct current (DC) motor. To do so, a novel hybrid algorithm was proposed which employs a recent metaheuristic approach, named Lévy flight distribution (LFD) algorithm, and a simplex search method known as Nelder–Mead (NM) algorithm. The proposed algorithm (LFDNM) combines both LFD and NM algorithms in such a way that the good explorative behaviour of LFD and excellent local search capability of NM help to form a novel hybridized version that is well balanced in terms of exploration and exploitation. The promise of the proposed structure was observed through employment of a DC motor with PID controller. Optimum values for PID gains were obtained with the aid of an integral of time multiplied absolute error objective function. To verify the effectiveness of the proposed algorithm, comparative simulations were carried out using cuckoo search algorithm, genetic algorithm and original LFD algorithm. The system behaviour was assessed through analysing the results for statistical and non-parametric tests, transient and frequency responses, robustness, load disturbance, energy and maximum control signals. The respective evaluations showed better performance of the proposed approach. In addition, the better performance of the proposed approach was also demonstrated through experimental verification. Further evaluation to demonstrate better capability was performed by comparing the LFDNM-based PID controller with other state-of-the-art algorithms-based PID controllers with the same system parameters, which have also confirmed the superiority of the proposed approach.

2018 ◽  
Vol 29 (1) ◽  
pp. 1043-1062 ◽  
Author(s):  
Bilal H. Abed-alguni ◽  
David J. Paul

Abstract The Cuckoo search (CS) algorithm is an efficient evolutionary algorithm inspired by the nesting and parasitic reproduction behaviors of some cuckoo species. Mutation is an operator used in evolutionary algorithms to maintain the diversity of the population from one generation to the next. The original CS algorithm uses the Lévy flight method, which is a special mutation operator, for efficient exploration of the search space. The major goal of the current paper is to experimentally evaluate the performance of the CS algorithm after replacing the Lévy flight method in the original CS algorithm with seven different mutation methods. The proposed variations of CS were evaluated using 14 standard benchmark functions in terms of the accuracy and reliability of the obtained results over multiple simulations. The experimental results suggest that the CS with polynomial mutation provides more accurate results and is more reliable than the other CS variations.


2019 ◽  
Vol 13 ◽  
pp. 174830261988952
Author(s):  
Yung C Shih

This article presents a cuckoo search algorithm, via Lévy flight, considering the effects of coevolution on the displacement dynamics of animal communities, and applies this algorithm to the development of maximally distributed physical arrangements. Some variables are introduced such as egg weight and the acquired learning of host birds. The results show that the proposed algorithm prevails, in the majority of the interviewed instances, in the degree of distribution in comparison with the classic TARGET and ALVO methods, and with the Genetic Algorithm. The proposed algorithm was shown to be able to obtain a low degree of distribution in a satisfactory computational time, especially in large problems.


The classical proportional integral derivative (PID) controllers are still use in various applications in industry. Magnetic levitation (ML) systems are rigidly nonlinear and sometimes unstable systems. Due to inbuilt nonlinearities of ML systems, tracking of position of ML Systems is still difficult. For the tracking purpose of position, PID controller parameters are found by choosing Cuckoo Search Algorithm (CSA) of optimization. The ranges of parameters are customized by z-n method of parameters. Simulation results show the tracking of position of ML systems using conventional and optimized parameters obtained with the CSA based controller.


2019 ◽  
Vol 8 (3) ◽  
pp. 117-130 ◽  
Author(s):  
Lakshmanaprabu S.K. ◽  
Najumnissa Jamal D. ◽  
Sabura Banu U.

In this article, the tuning of multiloop Fractional Order PID (FOPID) controller is designed for Two Input Two Output (TITO) processes using an evolutionary algorithm such as the Genetic algorithm (GA), the Cuckoo Search algorithm (CS) and the Bat Algorithm (BA). The control parameters of FOPID are obtained using GA, CS, and BA for minimizing the integral error criteria. The main objective of this article is to compare the performance of the GA, CS, and BA for the multiloop FOPID controller problem. The integer order internal model control based PID (IMC-PID) controller is designed using the GA and the performance of the IMC-PID controller is compared with the FOPID controller scheme. The simulation results confirm that BA offers optimal controller parameter with a minimum value of IAE, ISE, ITAE with faster settling time.


Sign in / Sign up

Export Citation Format

Share Document