Signal filtering method of variational mode decomposition and Euclidean distance based on optimizing parameters of classification particle swarm optimization algorithm

Author(s):  
Jingyi Lu ◽  
Xue Qu ◽  
Dongmei Wang ◽  
Jikang Yue ◽  
Lijuan Zhu ◽  
...  

In order to deal with the problem that the noise of leakage signals from natural gas pipelines has a great influence on the feature extraction of pipeline leakage, this paper proposes a signal denoising method of variational mode decomposition (VMD) and Euclidean distance (ED) based on optimizing parameters of classification particle swarm optimization (CPSO) algorithm. First, CPSO algorithm is used to optimize parameters K and [Formula: see text] of VMD, adaptively. The sum of the ratio of the mean and variance of the cross-correlation coefficient and the ratio of the mean and variance of kurtosis is used as the fitness function of CPSO. Then, the optimized VMD is used to decompose the signal to obtain several intrinsic mode functions (IMFs). Finally, ED is used to select the effective modes, and the signal is reconstructed to achieve signal noise reduction. The corresponding evaluation indicators show that the accuracy and robustness of the improved method are better than other noise reduction methods. The denoising effect is significant, which proves that the algorithm proposed in this paper is effective in signal filtering.


2020 ◽  
Vol 2 (4) ◽  
pp. 045036
Author(s):  
Dongmei Wang ◽  
Lijuan Zhu ◽  
Jikang Yue ◽  
Jingyi Lu ◽  
Dingwen Li ◽  
...  


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Cancan Yi ◽  
Yong Lv ◽  
Zhang Dang

Variational mode decomposition (VMD) is a new method of signal adaptive decomposition. In the VMD framework, the vibration signal is decomposed into multiple mode components by Wiener filtering in Fourier domain, and the center frequency of each mode component is updated as the center of gravity of the mode’s power spectrum. Therefore, each decomposed mode is compact around a center pulsation and has a limited bandwidth. In view of the situation that the penalty parameter and the number of components affect the decomposition effect in VMD algorithm, a novel method of fault feature extraction based on the combination of VMD and particle swarm optimization (PSO) algorithm is proposed. In this paper, the numerical simulation and the measured fault signals of the rolling bearing experiment system are analyzed by the proposed method. The results indicate that the proposed method is much more robust to sampling and noise. Additionally, the proposed method has an advantage over the EMD in complicated signal decomposition and can be utilized as a potential method in extracting the faint fault information of rolling bearings compared with the common method of envelope spectrum analysis.





Author(s):  
Hanxin Chen ◽  
Dong Liang Fan ◽  
Lu Fang ◽  
Wenjian Huang ◽  
Jinmin Huang ◽  
...  

In this paper, a new particle swarm optimization particle filter (NPSO-PF) algorithm is proposed, which is called particle cluster optimization particle filter algorithm with mutation operator, and is used for real-time filtering and noise reduction of nonlinear vibration signals. Because of its introduction of mutation operator, this algorithm overcomes the problem where by particle swarm optimization (PSO) algorithm easily falls into local optimal value, with a low calculation accuracy. At the same time, the distribution and diversity of particles in the sampling process are improved through the mutation operation. The defect of particle filter (PF) algorithm where the particles are poor and the utilization rate is not high is also solved. The mutation control function makes the particle set optimization process happen in the early and late stages, and improves the convergence speed of the particle set, which greatly reduces the running time of the whole algorithm. Simulation experiments show that compared with PF and PSO-PF algorithms, the proposed NPSO-PF algorithm has lower root mean square error, shorter running time, higher signal-to-noise ratio and more stable filtering performance. It is proved that the algorithm is suitable for real-time filtering and noise reduction processing of nonlinear signals.



Author(s):  
WenDe Cheng

Studies have shown that the chemical compositions affecting the magnetic properties of NdFeB magnets. In order to get the right NdFeB magnets, it is advantageous to have an accurate model with which one can predict the magnetic properties with different components. In this paper, according to an experimental dataset on the magnetic remanence of NdFeB, a predicting and optimizing model using support vector regression (SVR) combined with particle swarm optimization (PSO) was developed. The estimated result of SVR agreed with the experimental data well. Test results of leave-one-out cross validation show that the mean absolute error does not exceed 0.0036, the mean absolute percentage error is solely 0.53%, and the correlation coefficient () is as high as 0.839. This implies that one can estimate an available combination of different proportion components by using support vector regression model to get suitable magnetic remanence of NdFeB.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xianfu Cheng ◽  
Yuqun Lin

The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.



Sign in / Sign up

Export Citation Format

Share Document