scholarly journals Maxmaladaptation, occupant behaviour and energy performance gap

Author(s):  
Geoffrey Levermore

Occupant behaviour is a key factor in the energy consumption and performance of a building. However, it is difficult to model and simulate hence there is often a mismatch between the predicted and actual performance of a new or refurbished buildings and surprising variations in the consumptions of similar and identical buildings. Although environmental conditions affect people significantly, there are also non-environmental factors including how well employers manage people and how well dwelling occupants understand their controls. Rarely are these factors considered in building performance, especially commercial buildings. Poor management can lead to varying degrees of occupant maladaptation. Maladaptation taken here to mean behaviour patterns that are detrimental to the optimal functioning of the building. This paper proposes a novel concept for designers that examines the worst possible energy performance gap (“extreme” scenario testing) where the theoretical occupants do their best to make the building consume as much energy as possible. The novel concept is called “maxmaladaptation”. By considering maxmaladaptation, designers can attempt to reduce it, so reducing the energy gap. This paper briefly reviews the energy gap and social psychology and its contribution to understanding energy consumption with some examples, underlying the concept of maxmaladaptation. Practical application: Building energy performance gaps often exist because predicted design consumptions are often less than actual consumptions due to the occupants not behaving as designers expect. Using the concept of maxmaladaptation, an extreme scenario of maximum energy use by occupants, designers can design buildings to avoid unexpected energy consumption. Often the influences of occupant behaviour are not considered in detail. Social psychology gives an insight into non-environmental factors that can cause maladaptation, a constituent of maxmaladaptation.

2014 ◽  
Vol 8 (4) ◽  
pp. 527-543
Author(s):  
Craig Robertson ◽  
Dejan Mumovic

Purpose – This paper aims to explore the relationship between designed and actual building performance as represented in an Royal Institute of British Architects- and Chartered Institution of Building Services Engineers-backed web-based comparison platform and the industry perception of the pressures surrounding building performance assessment. European directives and UK Parliamentary Acts have resulted in a range of mechanisms aimed at encouraging monitoring of energy consumption, responsive management and evidence-based design. Web-based feedback platforms aim to feed evaluation data back to industry anonymously; however, there exists a range of barriers and disincentives that prevent widespread and habitual engagement with building evaluation. Design/methodology/approach – Using energy data from the CarbonBuzzweb platform and a series of semi-structured interviews, a mixed-methods study has been carried out. Analysis of the characteristics of the existing energy discrepancy between designed and actual performance shows where variance typically occurs. Interviews with industry actors presents a synopsis of the perceived and actual legislative and procedural pressures that exist in relation to building performance assessment. Findings – The conclusions of this paper identify weaknesses in the current legislative and incentivisation mechanisms with regard to targeting building energy performance and industrial pressures that hinder broader industry engagement with post-occupancy evaluation. Originality/value – The recommendations arising from this study are for adjustments to the existing legislative framework to increase participation in meaningful building energy evaluation targeted at the specifics of the energy gap and the motivations of industrial actors. This will specifically help to reduce building energy consumption and associated carbon emissions.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3455
Author(s):  
Aleksandar S. Anđelković ◽  
Miroslav Kljajić ◽  
Dušan Macura ◽  
Vladimir Munćan ◽  
Igor Mujan ◽  
...  

A building energy performance gap can be illustrated as the difference between the theoretical (methodologically defined) and the actual energy consumption. In EU countries, Energy Performance Certificates are issued when buildings are constructed, sold, or leased. This information is the first step in order to evaluate the energy performance of the building stock. In Serbia, when issuing an energy certificate, the adopted national methodology recognizes only energy consumption for heating. The main purpose of this paper is to evaluate the energy gap and estimate the relevance of an Energy Performance Certificate to meet the national energy efficiency or carbon target. An Energy Performance Certificate determines the theoretical residential and commercial building energy efficiency or its “design intent”. This research stresses the necessity of measuring and achieving reductions in actual energy consumption through system regulation and consumers’ self-awareness in buildings. The research compares the performance of the building stock (135) that is connected to the District Heating System (DHS), with its own integrated heat meter, to Individual Gas Boiler (IGB) systems (18), in the city of Novi Sad, Serbia, built after 2014. For the purpose of comparing energy consumption, 16 buildings were selected that are very similar in terms of design, operation, and location. The data used are derived from metered consumption data, official evidence of city service companies, and Energy Performance Certificates of the considered buildings. We have determined that IGB systems have a much wider specific annual performance gap (11.19–101 kWh/m2a) than the buildings in the DHS (3.16–18.58 kWh/m2a).


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6707
Author(s):  
Małgorzata Szulgowska-Zgrzywa ◽  
Ewelina Stefanowicz ◽  
Krzysztof Piechurski ◽  
Agnieszka Chmielewska ◽  
Marek Kowalczyk

This paper presents the results of measuring the final energy consumption for heating and domestic hot water (DHW) preparation and indoor conditions in 15 apartments located in pre-war tenement houses. The measurements were compared to the computed energy consumption. The calculations ware made based on the model calibrated by field measurements. The discrepancies between measurements and calculations were assessed using the energy performance gap (EPG). Calculations were made separately for energy for heating and for DHW preparation. Additionally, the results of EPG calculations for different levels of analysis are presented aiming at assessing the impact of weather, temperature in the surrounding zones and users’ behavior. Users’ behaviors influencing the size of the EPG were divided into typical (energy saving or excessive energy consumption) and forced (energy poverty, response to the apartment’s surroundings, technical limitations. The connection between the heating sources and the heating habits has been clearly observed in the research. The former (typical) behaviors were the origin of the energy gap in the apartments heated with natural gas and district heating. The latter (forced) were the origin of the gap in the apartments heated with mostly electricity and solid fuel (with one exception: one apartment that utilized the district heating).


Buildings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 131 ◽  
Author(s):  
Ahmed WA Hammad

Building energy performance tools are widely used to simulate the expected energy consumption of a given building during the operation phase of its life cycle. Deviations between predicted and actual energy consumptions have however been reported as a major limiting factor to the tools adopted in the literature. A significant reason highlighted as greatly influencing the difference in energy performance is related to the occupant behaviour of the building. To enhance the effectiveness of building energy performance tools, this study proposes a method which integrates Building Information Modelling (BIM) with artificial neural network model for limiting the deviation between predicted and actual energy consumption rates. Through training a deep neural network for predicting occupant behaviour that reflects the actual performance of the building under examination, accurate BIM representations are produced which are validated via energy simulations. The proposed method is applied to a realistic case study, which highlights significant improvements when contrasted with a static simulation that does not account for changes in occupant behaviour.


Author(s):  
Nishesh Jain ◽  
Esfand Burman ◽  
Dejan Mumovic ◽  
Mike Davies

To manage the concerns regarding the energy performance gap in buildings, a structured and longitudinal performance assessment of buildings, covering design through to operation, is necessary. Modelling can form an integral part of this process by ensuring that a good practice design stage modelling is followed by an ongoing evaluation of operational stage performance using a robust calibration protocol. In this paper, we demonstrate, via a case study of an office building, how a good practice design stage model can be fine-tuned for operational stage using a new framework that helps validate the causes for deviations of actual performance from design intents. This paper maps the modelling based process of tracking building performance from design to operation, identifying the various types of performance gaps. Further, during the operational stage, the framework provides a systematic way to separate the effect of (i) operating conditions that are driven by the building’s actual function and occupancy as compared with the design assumptions, and (ii) the effect of potential technical issues that cause underperformance. As the identification of issues is based on energy modelling, the process requires use of advanced and well-documented simulation tools. The paper concludes with providing an outline of the software platform requirements needed to generate robust design models and their calibration for operational performance assessments. Practical application The paper’s findings are a useful guide for building industry professionals to manage the performance gap with appropriate accuracy through a robust methodology in an easy to use workflow. The methodological framework to analyse building energy performance in-use links best practice design stage modelling guidance with a robust operational stage investigation. It helps designers, contractors, building managers and other stakeholders with an understanding of procedures to follow to undertake an effective measurement and verification exercise.


2021 ◽  
Author(s):  
Moe Otsubo

The energy performance gap between the predicted and actual energy consumption of 3 LEED for Homes certified buildings were investigated. The actual energy consumptions of the homes were found to be 23 to 77% higher than the initial energy consumption predictions made during the design stage. Revisions to the HOT2000 models to account for changes made between the design and occupancy phase of the buildings helped reduce the gap (9 to 40%). The sources of the discrepancies were found to be related to the energy modeling program’s limitations, inconsistency between the energy model and the actual building, and additional loads in the homes. The HOT2000 program, which is used for obtaining the EnerGuide rating for LEED certified homes, was compared against a dynamic energy simulation program to assess the applicability of the use of the former for energy efficient homes. The use of EnergyPlus not only allowed for a more accurate representation of the actual homes in the energy models, but an increase in the EnerGuide rating for the home was seen, which in turn equates to additional points for the home under the “Energy & Atmosphere” category for the LEED for Homes certification process


2017 ◽  
Vol 15 (03) ◽  
pp. 270-285 ◽  
Author(s):  
Jonghoon Kim ◽  
Jin-Young Hyun ◽  
Wai K. Chong ◽  
Samuel Ariaratnam

Purpose The purpose of this study was to explore the relationship between environmental factors and building energy consumption of three Leadership in Energy and Environmental Design (LEED)-certified buildings at the Arizona State University, by establishing the relationships of the outside atmospheric temperature and the energy consumed in the building using real-time data generated from different sources. Design/methodology/approach K-means clustering analysis is used to calibrate and eliminate unwanted influences or factors from a set of building consumption real-time data. For further statistical analysis, the chi-square is used to verify if the results are ample to prove the findings. Findings Few studies have addressed building energy consumption real-time data versus LEED Energy and Atmosphere (EA) credits with the data mining technique (k-means clustering) on most of building performance analyses. This study highlighted that the calibrating energy data are a better approach to analyze energy use in buildings and that there is a relationship between LEED credits’ (EA) Optimize Energy Performance scores and building energy efficiency. However, the energy consumption data alone do not yield useful results to establish the cause and effect relationships. Originality/value Although there are several previous research studies regarding LEED building energy performance, this research study focused on the LEED building energy performance versus LEED EA credits versus environmental factors using real-time building energy data and various statistical methods (e.g. K-means clustering and chi-square). The findings provide researchers, engineers and architects with valuable references for building energy analysis methods and supplements in LEED standards.


2020 ◽  
pp. 77-84
Author(s):  
Jian Yao ◽  
LiYi Chen ◽  
Wu Jin

Occupant behaviour significantly influences building energy consumption. This paper is devoted to studies the uncertainty of daylighting performance and lighting energy of manual solar shades on the south facade. A developed stochastic model for manual solar shades was used for co-simulation by BCVTB. Results show that uncertainty of shade action was not suppressed by the shade behaviour model with very weak relationship between different simulation outputs. Uncertainty of daylighting performance is 15.08 % while lighting energy uncertainty is 10.38 %. Although this level of energy uncertainty is not very significant, it influences economic analysis of manual solar shades and therefore, occupant related uncertainty should be taken into consideration when predicting energy performance of manual shades.


2021 ◽  
Author(s):  
M. Rajithan ◽  
◽  
D. Soorige ◽  
S.D.I.A. Amarasinghe ◽  
◽  
...  

Operational energy consumption in buildings has a crucial impact on global energy consumption. Nevertheless, significant energy savings can be achieved in buildings if properly designed, constructed, and operated. Building Energy Simulation (BES) plays a vital role in the design and optimisation of buildings. BES is used to compare the cost-effectiveness of energy-conservation measures in the design stage and assess various performance optimisation measures during the operational phase. However, there is a significant ‘performance gap’ between the predicted and the actual energy performance of buildings. This gap has reduced the trust and application of the BES. This article focused on investigating BES, reasons that lead to a performance gap between predicted and actual operational energy consumption of buildings, and the ways of minimising the gap. The article employed a comprehensive literature review as the research methodology. Findings revealed that reasons such as limited understanding of the building design, the complexity of the building design, poor commissioning, occupants’ behaviour, etc., influence the energy performance gap. After that, the strategies have been identified to minimise the energy performance gap such as proper commissioning, creating general models to observe occupants’ behaviour in buildings, and using the general models for energy simulation, ensuring better construction and quality through training and education, etc. Further, the findings of this study could be implemented by practitioners in the construction industry to effectively use energy simulation applications in designing energy-efficient and sustainable buildings.


Facilities ◽  
2017 ◽  
Vol 35 (11/12) ◽  
pp. 622-637 ◽  
Author(s):  
Suzaini M. Zaid ◽  
Amir Kiani Rad ◽  
Nurshuhada Zainon

Purpose Global warming and climate change is one of the biggest issues facing humanity in this century; its effects are felt on the highest peaks of Mount Everest to the low-lying islands in the India Ocean. This century marked the highest amount of carbon dioxide (CO2) emitted, breaking records of the past 650,000 years, and we have pushed the climate to “a point of no return”. Much of the climate contribution has been linked to humanity’s thirst for higher living standards and lifestyle, which has led to higher consumerism, depletion of earth’s resources, production of massive waste and carbon emissions. Fast forward from the sustainability agenda of Brundtland set in 1987 and the increasing demand for energy consumption to cater for the current global inhabitants, many “green” efforts have been taken by the building industry to reduce the overall environmental impact. This purpose of this study is to compare energy performance of a conventional office building with a green certified building. Design/methodology/approach This paper tries to bridge the performance gap by comparing measured operational energy consumption and carbon emission of Green Building Index (GBI)-certified office buildings in Kuala Lumpur, to determine whether “green buildings” are performing as intended in reducing their environmental impact. Findings This paper highlighted and compared operational energy consumption and carbon emissions of a GBI-certified office with a conventional office building in Malaysia. The paper also discusses the performance gap issue and its common causes, and aims to compare predicted energy and operational energy performance of buildings. Originality/value Initiatives such as “green” or “sustainable” design have been at the forefront of architecture, while green assessment tools have been used to predict the energy performance of a building during its operational phase. There is still a significant performance gap between predicted or simulated energy measurements to actual operational energy consumption. The need to measure actual performance of these so-called “green buildings” is important to investigate if there is a performance gap and whether these buildings can perform better than conventional buildings. Understanding why the performance gap occurs is a step in reducing actual and predicted energy performance in buildings.


Sign in / Sign up

Export Citation Format

Share Document