scholarly journals ANALYSING THE GAP BETWEEN PREDICTED AND ACTUAL OPERATIONAL ENERGY CONSUMPTION IN BUILDINGS: A REVIEW

2021 ◽  
Author(s):  
M. Rajithan ◽  
◽  
D. Soorige ◽  
S.D.I.A. Amarasinghe ◽  
◽  
...  

Operational energy consumption in buildings has a crucial impact on global energy consumption. Nevertheless, significant energy savings can be achieved in buildings if properly designed, constructed, and operated. Building Energy Simulation (BES) plays a vital role in the design and optimisation of buildings. BES is used to compare the cost-effectiveness of energy-conservation measures in the design stage and assess various performance optimisation measures during the operational phase. However, there is a significant ‘performance gap’ between the predicted and the actual energy performance of buildings. This gap has reduced the trust and application of the BES. This article focused on investigating BES, reasons that lead to a performance gap between predicted and actual operational energy consumption of buildings, and the ways of minimising the gap. The article employed a comprehensive literature review as the research methodology. Findings revealed that reasons such as limited understanding of the building design, the complexity of the building design, poor commissioning, occupants’ behaviour, etc., influence the energy performance gap. After that, the strategies have been identified to minimise the energy performance gap such as proper commissioning, creating general models to observe occupants’ behaviour in buildings, and using the general models for energy simulation, ensuring better construction and quality through training and education, etc. Further, the findings of this study could be implemented by practitioners in the construction industry to effectively use energy simulation applications in designing energy-efficient and sustainable buildings.

2021 ◽  
Author(s):  
Moe Otsubo

The energy performance gap between the predicted and actual energy consumption of 3 LEED for Homes certified buildings were investigated. The actual energy consumptions of the homes were found to be 23 to 77% higher than the initial energy consumption predictions made during the design stage. Revisions to the HOT2000 models to account for changes made between the design and occupancy phase of the buildings helped reduce the gap (9 to 40%). The sources of the discrepancies were found to be related to the energy modeling program’s limitations, inconsistency between the energy model and the actual building, and additional loads in the homes. The HOT2000 program, which is used for obtaining the EnerGuide rating for LEED certified homes, was compared against a dynamic energy simulation program to assess the applicability of the use of the former for energy efficient homes. The use of EnergyPlus not only allowed for a more accurate representation of the actual homes in the energy models, but an increase in the EnerGuide rating for the home was seen, which in turn equates to additional points for the home under the “Energy & Atmosphere” category for the LEED for Homes certification process


2021 ◽  
Author(s):  
Moe Otsubo

The energy performance gap between the predicted and actual energy consumption of 3 LEED for Homes certified buildings were investigated. The actual energy consumptions of the homes were found to be 23 to 77% higher than the initial energy consumption predictions made during the design stage. Revisions to the HOT2000 models to account for changes made between the design and occupancy phase of the buildings helped reduce the gap (9 to 40%). The sources of the discrepancies were found to be related to the energy modeling program’s limitations, inconsistency between the energy model and the actual building, and additional loads in the homes. The HOT2000 program, which is used for obtaining the EnerGuide rating for LEED certified homes, was compared against a dynamic energy simulation program to assess the applicability of the use of the former for energy efficient homes. The use of EnergyPlus not only allowed for a more accurate representation of the actual homes in the energy models, but an increase in the EnerGuide rating for the home was seen, which in turn equates to additional points for the home under the “Energy & Atmosphere” category for the LEED for Homes certification process


Facilities ◽  
2017 ◽  
Vol 35 (11/12) ◽  
pp. 622-637 ◽  
Author(s):  
Suzaini M. Zaid ◽  
Amir Kiani Rad ◽  
Nurshuhada Zainon

Purpose Global warming and climate change is one of the biggest issues facing humanity in this century; its effects are felt on the highest peaks of Mount Everest to the low-lying islands in the India Ocean. This century marked the highest amount of carbon dioxide (CO2) emitted, breaking records of the past 650,000 years, and we have pushed the climate to “a point of no return”. Much of the climate contribution has been linked to humanity’s thirst for higher living standards and lifestyle, which has led to higher consumerism, depletion of earth’s resources, production of massive waste and carbon emissions. Fast forward from the sustainability agenda of Brundtland set in 1987 and the increasing demand for energy consumption to cater for the current global inhabitants, many “green” efforts have been taken by the building industry to reduce the overall environmental impact. This purpose of this study is to compare energy performance of a conventional office building with a green certified building. Design/methodology/approach This paper tries to bridge the performance gap by comparing measured operational energy consumption and carbon emission of Green Building Index (GBI)-certified office buildings in Kuala Lumpur, to determine whether “green buildings” are performing as intended in reducing their environmental impact. Findings This paper highlighted and compared operational energy consumption and carbon emissions of a GBI-certified office with a conventional office building in Malaysia. The paper also discusses the performance gap issue and its common causes, and aims to compare predicted energy and operational energy performance of buildings. Originality/value Initiatives such as “green” or “sustainable” design have been at the forefront of architecture, while green assessment tools have been used to predict the energy performance of a building during its operational phase. There is still a significant performance gap between predicted or simulated energy measurements to actual operational energy consumption. The need to measure actual performance of these so-called “green buildings” is important to investigate if there is a performance gap and whether these buildings can perform better than conventional buildings. Understanding why the performance gap occurs is a step in reducing actual and predicted energy performance in buildings.


2019 ◽  
Vol 10 (1) ◽  
pp. 110-123
Author(s):  
G.A. Tennakoon ◽  
Anuradha Waidyasekara ◽  
B.J. Ekanayake

Purpose Many studies have focused on embodied energy (EE) and operational energy (OE), but a shortage of studies on decision making, which involves several decision makers whose decisions can affect the energy performance of buildings, is evident. From the stages of the project life cycle, the design stage is identified as the ideal stage for integrating energy efficiency into buildings. Therefore, the purpose of this paper is to revisit the role of professionals in designing energy-conscious buildings with low EE and OE. Design/methodology/approach This study administered a qualitative approach. Data were collected through semi-structured interviews only with 12 experts, due to the lack of expertise in the subject matter. The data were analyzed using manual content analysis. Findings The outcomes revealed the necessity to revisit the role of construction professionals in terms of adopting energy-efficient building design concepts from the project outset. The roles of the key professional groups (i.e. architects, structural engineers, services engineers and quantity surveyors) were identified through this research. Common issues in designing energy-efficient buildings and the means of addressing such problems were outlined. Originality/value This study contributes to the knowledge by revisiting the roles of construction professionals and proposing how they could leverage their strengths to play the important role and contribute collectively to design buildings with both low OE and EE.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


Author(s):  
Nishesh Jain ◽  
Esfand Burman ◽  
Dejan Mumovic ◽  
Mike Davies

To manage the concerns regarding the energy performance gap in buildings, a structured and longitudinal performance assessment of buildings, covering design through to operation, is necessary. Modelling can form an integral part of this process by ensuring that a good practice design stage modelling is followed by an ongoing evaluation of operational stage performance using a robust calibration protocol. In this paper, we demonstrate, via a case study of an office building, how a good practice design stage model can be fine-tuned for operational stage using a new framework that helps validate the causes for deviations of actual performance from design intents. This paper maps the modelling based process of tracking building performance from design to operation, identifying the various types of performance gaps. Further, during the operational stage, the framework provides a systematic way to separate the effect of (i) operating conditions that are driven by the building’s actual function and occupancy as compared with the design assumptions, and (ii) the effect of potential technical issues that cause underperformance. As the identification of issues is based on energy modelling, the process requires use of advanced and well-documented simulation tools. The paper concludes with providing an outline of the software platform requirements needed to generate robust design models and their calibration for operational performance assessments. Practical application The paper’s findings are a useful guide for building industry professionals to manage the performance gap with appropriate accuracy through a robust methodology in an easy to use workflow. The methodological framework to analyse building energy performance in-use links best practice design stage modelling guidance with a robust operational stage investigation. It helps designers, contractors, building managers and other stakeholders with an understanding of procedures to follow to undertake an effective measurement and verification exercise.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 94
Author(s):  
Tara L. Cavalline ◽  
Jorge Gallegos ◽  
Reid W. Castrodale ◽  
Charles Freeman ◽  
Jerry Liner ◽  
...  

Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15–17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35–40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.


2021 ◽  
pp. 174425912110560
Author(s):  
Yassine Chbani Idrissi ◽  
Rafik Belarbi ◽  
Mohammed Yacine Ferroukhi ◽  
M’barek Feddaoui ◽  
Driss Agliz

Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1480 ◽  
Author(s):  
Qadeer Ali ◽  
Muhammad Jamaluddin Thaheem ◽  
Fahim Ullah ◽  
Samad M. E. Sepasgozar

Rising demand and limited production of electricity are instrumental in spreading the awareness of cautious energy use, leading to the global demand for energy-efficient buildings. This compels the construction industry to smartly design and effectively construct these buildings to ensure energy performance as per design expectations. However, the research tells a different tale: energy-efficient buildings have performance issues. Among several reasons behind the energy performance gap, occupant behavior is critical. The occupant behavior is dynamic and changes over time under formal and informal influences, but the traditional energy simulation programs assume it as static throughout the occupancy. Effective behavioral interventions can lead to optimized energy use. To find out the energy-saving potential based on simulated modified behavior, this study gathers primary building and occupant data from three energy-efficient office buildings in major cities of Pakistan and categorizes the occupants into high, medium, and low energy consumers. Additionally, agent-based modeling simulates the change in occupant behavior under the direct and indirect interventions over a three-year period. Finally, energy savings are quantified to highlight a 25.4% potential over the simulation period. This is a unique attempt at quantifying the potential impact on energy usage due to behavior modification which will help facility managers to plan and execute necessary interventions and software experts to develop effective tools to model the dynamic usage behavior. This will also help policymakers in devising subtle but effective behavior training strategies to reduce energy usage. Such behavioral retrofitting comes at a much lower cost than the physical or technological retrofit options to achieve the same purpose and this study establishes the foundation for it.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5038
Author(s):  
Goopyo Hong ◽  
Chul Kim ◽  
Jun Hong

In commercial buildings, HVAC systems are becoming a primary driver of energy consumption, which already account for 45% of the total building energy consumption. In the previous literature, researchers have studied several energy conservation measures to reduce HVAC system energy consumption. One of the effective ways is an economizer in air-handling units. Therefore, this study quantified the impact of the outdoor air fraction by economizer control type in cooling system loads based on actual air-handling unit operation data in a hospital. The optimal outdoor air fraction and energy performance for economizer control types were calculated and analyzed. The result showed that economizer controls using optimal outdoor air fraction were up to 45% more efficient in cooling loads than existing HVAC operations in the hospital. The energy savings potential was 6–14% of the differential dry-bulb temperature control, 17–27% of the differential enthalpy control, 8–17% of the differential dry-bulb temperature and high-limit differential enthalpy control, and 16–27% of the differential enthalpy and high-limit differential dry-bulb temperature control compared to the no economizer control. The result of this study will contribute to providing a better understanding of economizer controls in the hospital when the building operates in hot-humid climate regions.


Sign in / Sign up

Export Citation Format

Share Document