Physics research in Israel—A preliminary bibliometric analysis

1984 ◽  
Vol 8 (5) ◽  
pp. 185-195 ◽  
Author(s):  
Subbiah Arunachalam ◽  
M.K. Dhirendra Rao ◽  
Praveen K. Shrivastava

The impact of physics research carried out in Israel on the international literature is assessed from data on publication and citation counts. We have considered in this analysis all papers published from Israel and covered under six of the ten major sections of INSPEC's Physics Abstracts, January-June 1977 (covering condensed matter physics, nuclear and particle physics, atomic and molecular physics and biophysics and physical chemistry) as well as citations to these papers as seen from five annual editions of Science Citation Index, 1977-1981. An analysis of these data permits us to identify: (i) areas of research in which Israel is strong, (ii) highly cited publications, (iii) the distribution of citations over the years, and (iv) how quickly the papers get cited. Israel accounts for less than 1% of the world's physics publications, but undeniably physics done in Israel is an integral part of the mainstream of world physics. Israeli physicists place almost all their work in foreign journals, most of them published from the United States, the Nether lands and the United Kingdom. Many of these journals have a good standing as seen from their high impact factors and immediacy indices. Nearly all papers in our sample have originated in eight institutions, indicating that Israel is free from the common Third World malady of spreading the butter of R&D budget too thinly. Overall, Israeli physics appears to be productive in condensed matter physics, nuclear physics and atomic and molecular physics. However, chemical physics tops the list if one considers both the number of papers published and the cognitive impact these papers have had. Two areas where Israel did not publish much and yet had a few publica tions of high impact are: (i) special theories, interaction models and particle systematics, and (ii) biophysics. Surprisingly for a nation interested in both the military and civilian applications of nuclear energy, Israel's publications in nuclear physics are not as well cited as her publications in many other subfields of physics.

1989 ◽  
Vol 110 ◽  
pp. 87-88
Author(s):  
Wolfgang Lück

Since 1979 the Fachinformationszentrum Karlsruhe produces the bibliographic database PHYS which covers the worldwide literature in physics. The database is available on STN International. The database contains about 1,2 million citations in all fields of physics ranging from mathematical physics, elementary particles and field theories, nuclear, atomic and molecular physics, optics, acoustics and fluid dynamics, plasma physics, condensed matter physics, materials science, physical chemistry and biophysics up to geophysics, astronomy and astrophysics. The annual update contains more than 120.000 citations. The database is updated bimonthly. All kinds of literature are included from journal articles, conference papers, books and reports up to dissertations. The citations in the database are in English, publications in other languages have translated English title and abstract. Astronomy and astrophysics are covered in PHYS completely as possible. In 1987 there were more than 21.000 citations in these fields. There are many citations which are classified in PHYS into other fields like atomic or plasma physics and optics and which are not numbered to astronomy but may have a specific relevance for astronomers.


2021 ◽  
Vol 51 (5) ◽  
pp. 605-633
Author(s):  
Julia Harriet Menzel

This paper examines the history of the renormalization group, a cornerstone of contemporary theoretical physics, focusing on the work of Kenneth Wilson (winner of the 1982 Nobel Prize in physics) and affiliated scholars in the 1970s. In particular, it reconstructs how studies of the renormalization group led to formative interactions between two distinct branches of physics, namely particle physics and condensed matter theory. Instead of explaining such intellectual coordination as the result of material and conceptual exchanges, as in Peter Galison’s widely influential discussion of the “trading zone,” my analysis emphasizes the pedagogical labor, social institutions, and political economic conditions that gave the renormalization group its mediating power. To that end, I show how early lectures and fast circulating pre-prints on the renormalization group created a population of physicists in the United States conversant in the rudiments of both condensed matter and particle theory. I then root the formation of a transatlantic network of renormalization group enthusiasts in the geopolitics of the Cold War, showing that the spread of Wilsonian ideas was made possible by a liberal internationalist program of academic exchanges and summer schools sponsored by the US state department and NATO. Finally, I argue that sharp cuts to basic science funding in the United States pushed young physicists seeking jobs in the 1970s to work across specializations, which visibly impacted how renormalization group ideas were interpreted and used—often against the objections of their original progenitors.


2007 ◽  
Vol 2 (3) ◽  
pp. 87 ◽  
Author(s):  
Lorie Andrea Kloda

Objective – To determine whether three competing citation tracking services result in differing citation counts for a known set of articles, and to assess the extent of any differences. Design – Citation analysis, observational study. Setting – Three citation tracking databases: Google Scholar, Scopus and Web of Science. Subjects – Citations from eleven journals each from the disciplines of oncology and condensed matter physics for the years 1993 and 2003. Methods – The researchers selected eleven journals each from the list of journals from Journal Citation Reports 2004 for the categories “Oncology” and “Condensed Matter Physics” using a systematic sampling technique to ensure journals with varying impact factors were included. All references from these 22 journals were retrieved for the years 1993 and 2003 by searching three databases: Web of Science, INSPEC, and PubMed. Only research articles were included for the purpose of the study. From these, a stratified random sample was created to proportionally represent the content of each journal (oncology 1993: 234 references, 2003: 259 references; condensed matter physics 1993: 358 references, 2003: 364 references). In November of 2005, citations counts were obtained for all articles from Web of Science, Scopus and Google Scholar. Due to the small sample size and skewed distribution of data, non-parametric tests were conducted to determine whether significant differences existed between sets. Main results – For 1993, mean citation counts were highest in Web of Science for both oncology (mean = 45.3, SD = 77.4) and condensed matter physics (mean = 22.5, SD = 32.5). For 2003, mean citation counts were higher in Scopus for oncology (mean = 8.9, SD = 12.0), and in Web of Science for condensed matter physics (mean = 3.0, SD = 4.0). There was not enough data for the set of citations from Scopus for condensed matter physics for 1993 and it was therefore excluded from analysis. A Friedman test to measure for differences between all remaining groups suggested a significant difference existed, and so pairwise post-hoc comparisons were performed. The Wilcoxon Signed Ranked tests demonstrated significant differences “in citation counts between all pairs (p < 0.001) except between Google Scholar and Scopus for CM physics 2003 (p = 0.119).” The study also looked at the number of unique references from each database, as well as the proportion of overlap for the 2003 citations. In the area of oncology, there was found to be 31% overlap between databases, with Google Scholar including the most unique references (13%), followed by Scopus (12%) and Web of Science (7%). For condensed matter physics, the overlap was lower at 21% and the largest number of unique references was found in Web of Science (21%), with Google Scholar next largest (17%) and Scopus the least (9%). Citing references from Google Scholar were found to originate from not only journals, but online archives, academic repositories, government and non-government white papers and reports, commercial organizations, as well as other sources. Conclusion – The study does not confirm the authors’ hypothesis that differing scholarly coverage would result in different citation counts from the three databases. While there were significant differences in mean citation rates between all pairs of databases except for Google Scholar and Scopus in condensed matter physics for 2003, no one database performed better overall. Different databases performed better for different subjects, as well as for different years, especially Scopus, which only includes references starting in 1996. The results of this study suggest that the best citation database will depend on the years being searched as well as the subject area. For a complete picture of citation behaviour, the authors suggest all three be used.


Atoms ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Vladimir Srećković ◽  
Milan Dimitrijević ◽  
Nikolai Bezuglov

Many areas of science today, like atomic and molecular physics, nuclear physics, astrophysics, laboratory plasma research etc., depend on data for ionic, atomic, and molecular collision processes. The purpose of the Special Issue “Atomic and Ionic Collisions with Formation of Quasimolecules” in Atoms is to engage a broad community of researchers to consolidate knowledge, make new discoveries, and to continue the exchange of ideas.


2008 ◽  
Vol 23 (11) ◽  
pp. 1627-1635 ◽  
Author(s):  
STEVEN WEINBERG

Reflections on spontaneous symmetry breaking, and the connection between condensed matter physics and particle physics, as given in a talk at a symposium at the University of Illinois in Urbana, celebrating the 50th anniversary of the theory of superconductivity.


2013 ◽  
Vol 864-867 ◽  
pp. 2413-2417
Author(s):  
Hong Tao Wang ◽  
Jin Yong Zhao ◽  
Gai Ling Wang ◽  
Qing Hong Huangfu

Ecohydraulics is an emerging interdisciplinary science and mainstream engineering researching on the interaction relationship between hydrodynamic characteristic and aquatic ecosystem, it integrates biology, geology, hydrology, morphology, ecology, engineering and other disciplines. Based on the collection of literature on ecohydraulics from Web of Science database, the bibliometric analysis on 563 literatures from the year 1991 to 2012 has been conducted, including publication year, author, country, institution, subject, source journal and keyword analysis. Some conclusions have been made that these literatures on ecohydraulics are growing exponentially year by year; these literature involves a lot of authors and forms three research groups which scattered in Britain, the United States and New Zealand, the result clearly shows a positive correlation between the number of published literatures and the length of the research history in this subject; the main institutions of these literature include United States Geological Survey, National Institute of Water and Atmospheric Research, Chinese Academy of Sciences, University of Lyon and University of Birmingham; and the subjects of these literature include environmental sciences & ecology, water resources, marine & freshwater biology, engineering and other subjects; more than 40% of the literature published in journals with the impact factors greater than 2.0. The main research contents are as follow: biological characteristics of aquatic organism, the impact of hydrodynamics on river habitats and aquatic organisms and, the feedback of the organism on flow. Theoretical analysis, system testing, statistical analysis and hybrid analog-digital simulation are primary research techniques and applications of the research concentrate on environmental flow requirement, habitat assessment, eco-engineering design and flow field control.


2016 ◽  
Vol 30 (19) ◽  
pp. 1630012 ◽  
Author(s):  
A. J. Leggett

It is an honor and a pleasure to have been invited to give a talk in this conference celebrating the memory of the late Professor Abdus Salam. To my regret, I did not know Professor Salam personally, but I am very aware of his work and of his impact on my area of specialization, condensed matter physics, both intellectually through his ideas on spontaneously broken symmetry and more practically through his foundation of the ICTP. Since I assume that most of this audience are not specialized in condensed-matter physics, I thought I would talk about one topic which to some extent bridges this field and the particle-physics interests of Salam, namely Majorana fermions (M.F.s). However, as we shall see, the parallels which are often drawn in the current literature may be a bit too simplistic. I will devote most of this talk to a stripped-down exposition of the current orthodoxy concerning M.F.s. in condensed-matter physics and their possible applications to topological quantum computing (TQC), and then at the end briefly indicate why I believe this orthodoxy may be seriously misleading.


2013 ◽  
Vol 141 (6) ◽  
pp. 2058-2065 ◽  
Author(s):  
Thomas M. Hamill ◽  
Fanglin Yang ◽  
Carla Cardinali ◽  
Sharanya J. Majumdar

Abstract The impact of assimilating data from the 2011 Winter Storm Reconnaissance (WSR) program on numerical weather forecasts was assessed. Parallel sets of analyses and deterministic 120-h numerical forecasts were generated using the ECMWF four-dimensional variational data assimilation (4D-Var) and Integrated Forecast System. One set of analyses was generated with all of the normally assimilated data plus WSR targeted dropwindsonde data, the other with only the normally assimilated data. Forecasts were then generated from the two analyses. The comparison covered the period from 10 January to 28 March 2011, during which 98 flights and 776 total dropwindsondes were deployed from four different air bases in the Pacific basin and the United States. The dropwindsondes were deployed in situations where guidance indicated the potential for high-impact weather and/or the potential for large subsequent forecast errors. Downstream target verification regions where the high-impact weather was expected were identified for each case. Forecast errors around the target verification regions were evaluated using an approximation to the total-energy norm. Precipitation forecasts were also evaluated over the contiguous United States using the equitable threat score and bias. Forecast impacts were generally neutral and thus smaller than reported in previous studies, most from over a decade ago, perhaps because of the improved forecast and assimilation system and the somewhat denser observation network. Target areas may also have been undersampled in this study. The neutral results from 2011 suggest that it may be more beneficial to explore other targeted observation concepts for the midlatitudes, such as assimilation of a denser set of cloud-drift winds and radiance data in dynamically sensitive regions.


Sign in / Sign up

Export Citation Format

Share Document