scholarly journals Toxicologic Pathology Forum*: Opinion on Integrating Innovative Digital Pathology Tools in the Regulatory Framework

2019 ◽  
Vol 47 (4) ◽  
pp. 436-443 ◽  
Author(s):  
Béatrice E. Gauthier ◽  
Frédéric Gervais ◽  
Gregory Hamm ◽  
Donal O’Shea ◽  
Alain Piton ◽  
...  

Digital pathology is defined as the ability to examine digitized microscopic slides and to generate qualitative and quantitative data. The field of digital pathology is rapidly evolving and has the potential to revolutionize toxicologic pathology. Techniques such as automated 2-D image analysis, whole slide imaging, and telepathology are already considered “mature” technologies and have been used for decades in exploratory studies; however, many organizations are reluctant to use digital pathology in regulatory toxicology studies. Innovative technologies using digitized slides including high-content imaging modalities and artificial intelligence are still under development but are increasingly used in toxicologic pathology. While software validation requirements are already described, clear guidance for application of these rules to the digital pathology field are few and the acceptance of these technologies by regulatory authorities remains necessary for successful adoption of digital pathology into the mainstream of toxicologic pathology. This topic was discussed during a roundtable at the 2018 Annual Congress of the French Society of Toxicologic Pathology. This opinion article summarizes the discussion regarding the current questions and challenges on the integration of innovative digital pathology tools within a good laboratory practice framework and is meant to stimulate further discussion among the toxicologic pathology community. [Box: see text]

2019 ◽  
Vol 47 (2) ◽  
pp. 100-107 ◽  
Author(s):  
Alys Bradley ◽  
Matt Jacobsen

Whole slide imaging (WSI) technology has advanced to a point where it has replaced the glass slide as the primary means of pathology evaluation within many areas of medical pathology. The deployment of WSI in the field of toxicologic pathology has been delayed by a lack of clarity around the degree of validation required for its use on Good Laboratory Practice (GLP) studies. The current opinion piece attempts to provide a high-level overview of WSI technology to include basic methodology, advantages and disadvantages over a conventional microscope, validation status of WSI scanners, and perceived concerns over regulatory acceptance for the use of WSI for (GLP) peer review in the field of toxicologic pathology. Observations are based on the extensive use by AstraZeneca of WSI for the peer review of non-GLP studies conducted at Charles River facilities and represent the experiences of the authors. [Box: see text]


Author(s):  
Elena Aloisio ◽  
Felicia Stefania Falvella ◽  
Assunta Carnevale ◽  
Mauro Panteghini

Author(s):  
R. Rosilawati ◽  
A. Ruziyatul Aznieda ◽  
A. Roziah ◽  
N. Ab Hamid ◽  
C. H. Teh ◽  
...  

2006 ◽  
Vol 10 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Stephan Hassler ◽  
Gérard Donzé ◽  
Peter M. Esch ◽  
Bruno Eschbach ◽  
Hansruedi Hartmann ◽  
...  

2017 ◽  
Vol 142 (3) ◽  
pp. 369-382 ◽  
Author(s):  
Zoya Volynskaya ◽  
Hung Chow ◽  
Andrew Evans ◽  
Alan Wolff ◽  
Cecilia Lagmay-Traya; ◽  
...  

Context.— The critical role of pathology in diagnosis, prognosis, and prediction demands high-quality subspecialty diagnostics that integrates information from multiple laboratories. Objective.— To identify key requirements and to establish a systematic approach to providing high-quality pathology in a health care system that is responsible for services across a large geographic area. Design.— This report focuses on the development of a multisite pathology informatics platform to support high-quality surgical pathology and hematopathology using a sophisticated laboratory information system and whole slide imaging for histology and immunohistochemistry, integrated with ancillary tools, including electron microscopy, flow cytometry, cytogenetics, and molecular diagnostics. Results.— These tools enable patients in numerous geographic locations access to a model of subspecialty pathology that allows reporting of every specimen by the right pathologist at the right time. The use of whole slide imaging for multidisciplinary case conferences enables better communication among members of patient care teams. The system encourages data collection using a discrete data synoptic reporting module, has implemented documentation of quality assurance activities, and allows workload measurement, providing examples of additional benefits that can be gained by this electronic approach to pathology. Conclusion.— This approach builds the foundation for accurate big data collection and high-quality personalized and precision medicine.


2018 ◽  
Vol 143 (2) ◽  
pp. 222-234 ◽  
Author(s):  
Mark D. Zarella ◽  
Douglas Bowman; ◽  
Famke Aeffner ◽  
Navid Farahani ◽  
Albert Xthona; ◽  
...  

Context.— Whole slide imaging (WSI) represents a paradigm shift in pathology, serving as a necessary first step for a wide array of digital tools to enter the field. Its basic function is to digitize glass slides, but its impact on pathology workflows, reproducibility, dissemination of educational material, expansion of service to underprivileged areas, and intrainstitutional and interinstitutional collaboration exemplifies a significant innovative movement with far-reaching effects. Although the benefits of WSI to pathology practices, academic centers, and research institutions are many, the complexities of implementation remain an obstacle to widespread adoption. In the wake of the first regulatory clearance of WSI for primary diagnosis in the United States, some barriers to adoption have fallen. Nevertheless, implementation of WSI remains a difficult prospect for many institutions, especially those with stakeholders unfamiliar with the technologies necessary to implement a system or who cannot effectively communicate to executive leadership and sponsors the benefits of a technology that may lack clear and immediate reimbursement opportunity. Objectives.— To present an overview of WSI technology—present and future—and to demonstrate several immediate applications of WSI that support pathology practice, medical education, research, and collaboration. Data Sources.— Peer-reviewed literature was reviewed by pathologists, scientists, and technologists who have practical knowledge of and experience with WSI. Conclusions.— Implementation of WSI is a multifaceted and inherently multidisciplinary endeavor requiring contributions from pathologists, technologists, and executive leadership. Improved understanding of the current challenges to implementation, as well as the benefits and successes of the technology, can help prospective users identify the best path for success.


Sign in / Sign up

Export Citation Format

Share Document