Effect of Chemoreceptor and Pulmonary Receptor Stimulation on Dilator Nares EMG Activity in the Dog

1983 ◽  
Vol 91 (6) ◽  
pp. 648-652 ◽  
Author(s):  
Daniel J. Blum ◽  
Thomas V. McCaffrey

To define the relationship between central control of upper airway muscles and respiratory muscle function, the electromyographic responses of the dilator nares muscles to stimulation of chemoreceptors and pulmonary receptors were studied in six anesthetized dogs. Only at maximal levels of hypoxia was the inspiratory activity of the dilator nares significantly increased. Hypercapnic stimulation increased the inspiratory activity with each incremental increase in CO2. Pulmonary stretch receptor stimulation produced by lung inflation inhibited dilator nares activity. Pulmonary irritant receptor stimulation by intravenously administered histamine increased dilator nares activity, as did pulmonary J receptor stimulation by the intravenous administration of capsaicin.

2011 ◽  
Vol 110 (1) ◽  
pp. 69-75 ◽  
Author(s):  
S. Cheng ◽  
J. E. Butler ◽  
S. C. Gandevia ◽  
L. E. Bilston

The electromyographic (EMG) activity of human upper airway muscles, particularly the genioglossus, has been widely measured, but the relationship between EMG activity and physical movement of the airway muscles remains unclear. We aimed to measure the motion of the soft tissues surrounding the airway during normal and loaded inspiration on the basis of the hypothesis that this motion would be affected by the addition of resistance to breathing during inspiration. Tagged MR imaging of seven healthy subjects was performed in a 3-T scanner. Tagged 8.6-mm-spaced grids were used, and complementary spatial modulation of magnetization images were acquired beginning ∼200 ms before inspiratory airflow. Deformation of tag line intersections was measured. The genioglossus moved anteriorly during normal and loaded inspiration, with less movement during loaded inspiration. The motion of tissues at the anterior border of the upper airway was nonuniform, with larger motions inferiorly. At the level of the soft palate, the lateral dimension of the airway decreased significantly during loaded inspiration (−0.15 ± 0.09 and −0.48 ± 0.09 mm during unloaded and loaded inspiration, respectively, P < 0.05). When resistance to inspiratory flow was added, genioglossus motion and lateral dimensions of the airway at the level of the soft palate decreased. Our results suggest that genioglossus motion begins early to dilate the airway prior to airflow and that inspiratory loading reduces the anterior motion of the genioglossus and increases the collapse of the lateral airway walls at the level of the soft palate.


1985 ◽  
Vol 58 (2) ◽  
pp. 452-458 ◽  
Author(s):  
K. P. Strohl ◽  
J. M. Fouke

We reasoned that in an isolated sealed upper airway a pressure change would be caused by a change in airway volume. In eight spontaneously breathing anesthetized dogs, we isolated the upper airway by transecting the cervical trachea and sealing it from the lung and from the atmosphere. Pressure changes in this isolated upper airway were studied in relation to respiratory phase as evidenced by alae nasi electromyographic (EMG) activation and tidal volume measured at the distal trachea. A fall in pressure, indicating airway dilation, occurred with each spontaneous respiratory effort. Like the moving average of the alae nasi EMG, the pressure drop reached a peak value early in inspiration, was inhibited by further lung inflation, and was absent during passive mechanical ventilation. End-expiratory tracheal occlusion or vagotomy prolonged and augmented EMG activity and also the inspiratory fall in upper airway pressure. Increased levels of CO2 increased the magnitude of change in pressure during inspiration. An inhibiting effect of lung inflation was present to an equal extent at low and high levels of chemical drive. We show that dilation of the airway is concurrent with upper airway muscle activation during early inspiration, that this dilation increases with increasing chemical drive, and that vagal reflexes during lung inflation inhibit this dilation during the latter half of inspiration.


2003 ◽  
Vol 13 (1) ◽  
pp. 1-8
Author(s):  
A.R. Anker ◽  
A. Ali ◽  
H.E. Arendt ◽  
S.P. Cass ◽  
L.A. Cotter ◽  
...  

Prior work has shown that the vestibular system contributes to regulating activity of upper airway muscles including the tongue protruder muscle genioglossus. The goal of the present experiments was to determine whether electrical vestibular stimulation could potentially be used to alter genioglossal activity in awake animals. Six adult cats were instrumented for recording of EMG activity from genioglossus, abdominal musculature, and triceps. In addition, a silver ball electrode was implanted on the round window for stimulation of vestibular afferents. Subsequently, stimulation and recordings were conducted while animals were awake. In all cases, stimulation using single shocks or trains of pulses > 100 μA in intensity produced responses in all muscles, including genioglossus. The latency of the genioglossal response was approximately 12 msec, and delivering continuous current trains to the labyrinth chronically elevated the muscle's activity. Although a number of muscles were affected by the stimulus, animals experienced no obvious distress or balance disturbances. Vestibular stimulation remained effective in producing genioglossal responses until experiments were discontinued 1–2 months following onset. These data suggest that electrical vestibular stimulation could potentially be used therapeutically to alter upper airway muscle activity.


1984 ◽  
Vol 57 (1) ◽  
pp. 197-204 ◽  
Author(s):  
W. B. Van de Graaff ◽  
S. B. Gottfried ◽  
J. Mitra ◽  
E. van Lunteren ◽  
N. S. Cherniack ◽  
...  

The position of the hyoid arch suggests that it supports soft tissue surrounding the upper airway (UA) and can act to maintain UA patency. We also suspected that muscles inserting on the hyoid arch might show respiratory patterns of activity that could be affected by respiratory stimuli. To test these possibilities, we moved the hyoid arch ventrally in six anesthetized dogs either by traction on it or by stimulation of hyoid muscles. UA resistance was decreased 73 +/- (SE) 6% and 72 +/- 6% by traction and stimulation during expiration and 57 +/- 15% and 52 +/- 8% during inspiration. Moving averages of the geniohyoid (GH) and thyrohyoid (TH) obtained in six other dogs breathing 100% O2 showed phasic respiratory activity while the sternohyoid (SH) showed phasic respiratory activity in only two of these animals and no activity in four. With progressive hypercapnia, GH and TH increased as did SH when activity was already present. Airway occlusion at end expiration augmented and prolonged inspiratory activity in the hyoid muscles but did not elicit SH activity if not already present. Occlusion at end inspiration suppressed phasic activity in hyoid muscles for as long as in the diaphragm. After vagotomy activity increased and became almost exclusively inspiratory. Activity appeared in SH when not previously present. Duration and amplitude of hyoid muscle activity were increased with negative UA pressure and augmented breaths. We conclude that the hyoid arch and muscles can strongly affect UA flow resistance. Hyoid muscles show responses to chemical, vagal, and negative pressure stimuli similar to other UA muscles.


1986 ◽  
Vol 61 (3) ◽  
pp. 912-918 ◽  
Author(s):  
J. M. Fouke ◽  
J. P. Teeter ◽  
K. P. Strohl

The study was performed to investigate the relationship between force generation and upper airway expansion during respiratory efforts by upper airway muscles. In 11 anesthetized dogs we isolated the upper airway (nasal, oral, pharyngeal, and laryngeal regions) by transecting the cervical trachea and sealing the nasal and oral openings. During spontaneous respiratory efforts the pressure within the sealed upper airway, used as an index of dilating force, decreased during inspiration. On alternate breaths the upper airway was opened to a pneumotachograph, and an increase in volume occurred, also during inspiration. Progressive hyperoxic hypercapnia produced by rebreathing increased the magnitude of change in pressure and volume. At any level of drive, peak pressure or volume occurred at the same point during inspiration. At any level of drive, volume and pressure changes increased with end-expiratory occlusion of the trachea. The force-volume relationship determined from measurements during rebreathing was compared with pressure-volume curves performed by passive inflation of the airway while the animal was apneic. The relationship during apnea was 1.06 +/- 0.55 (SD) ml/cmH2O, while the force-volume relationship from rebreathing trials was -1.09 +/- 0.45 ml/cmH2O. We conclude that there is a correspondence between force production and volume expansion in the upper airway during active respiratory efforts.


1991 ◽  
Vol 53 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Osamu KAMINUMA ◽  
Hirokazu TSUBONE ◽  
Job Manaet MATIAS ◽  
Ryohei NISHIMURA ◽  
Shigeru SUGANO

2003 ◽  
Vol 95 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Pierre-Hugues Fortier ◽  
Philippe Reix ◽  
Julie Arsenault ◽  
Dominique Dorion ◽  
Jean-Paul Praud

We tested the hypotheses that active upper airway closure during induced central apneas in nonsedated lambs 1) is complete and occurs at the laryngeal level and 2) is not due to stimulation of the superior laryngeal nerves (SLN). Five newborn lambs were surgically instrumented to record thyroarytenoid (TA) muscle (glottal constrictor) electromyographic (EMG) activity with supra- and subglottal pressures. Hypocapnic and nonhypocapnic central apneas were induced before and after SLN sectioning in the five lambs. A total of 174 apneas were induced, 116 before and 58 after sectioning of the internal branch of the SLN (iSLN). Continuous TA EMG activity was observed in 88% of apneas before iSLN section and in 87% of apneas after iSLN section. A transglottal pressure different from zero was observed in all apneas with TA EMG activity, with a mean subglottal pressure of 4.3 ± 0.8 cmH2O before and 4.7 ± 0.7 cmH2O after iSLN section. Supraglottal pressure was consistently atmospheric. Sectioning of both iSLNs had no effects on the results. We conclude that upper airway closure during induced central apneas in lambs is active, complete, and occurs at the glottal level only. Consequently, a positive subglottal pressure is maintained throughout the apnea. Finally, this complete active glottal closure is independent from laryngeal afferent innervation.


1984 ◽  
Vol 56 (3) ◽  
pp. 746-752 ◽  
Author(s):  
E. van Lunteren ◽  
W. B. Van de Graaff ◽  
D. M. Parker ◽  
J. Mitra ◽  
M. A. Haxhiu ◽  
...  

The effects of negative pressure applied to just the upper airway on nasal and laryngeal muscle activity were studied in 14 spontaneously breathing anesthetized dogs. Moving average electromyograms were recorded from the alae nasi (AN) and posterior cricoarytenoid (PCA) muscles and compared with those of the genioglossus (GG) and diaphragm. The duration of inspiration and the length of inspiratory activity of all upper airway muscles was increased in a graded manner proportional to the amount of negative pressure applied. Phasic activation of upper airway muscles preceded inspiratory activity of the diaphragm under control conditions; upper airway negative pressure increased this amount of preactivation. Peak diaphragm activity was unchanged with negative pressure, although the rate of rise of muscle activity decreased. The average increases in peak upper airway muscle activity in response to all levels of negative pressure were 18 +/- 4% for the AN, 27 +/- 7% for the PCA, and 122 +/- 31% for the GG (P less than 0.001). Rates of rise of AN and PCA electrical activity increased at higher levels of negative pressure. Nasal negative pressure affected the AN more than the PCA, while laryngeal negative pressure had the opposite effect. The effects of nasal negative pressure could be abolished by topical anesthesia of the nasal passages, while the effects of laryngeal negative pressure could be abolished by either topical anesthesia of the larynx or section of the superior laryngeal nerve. Electrical stimulation of the superior laryngeal nerve caused depression of AN and PCA activity, and hence does not reproduce the effects of negative pressure.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 66 (3) ◽  
pp. 1501-1505 ◽  
Author(s):  
G. Insalaco ◽  
G. Sant'Ambrogio ◽  
F. B. Sant'Ambrogio ◽  
S. T. Kuna ◽  
O. P. Mathew

Esophageal electrodes have been used for recording the electromyographic (EMG) activity of the posterior cricoarytenoid muscle (PCA). To determine the specificity of this EMG technique, esophageal electrode recordings were compared with intramuscular recordings in eight anesthetized mongrel dogs. Intramuscular wire electrodes were placed in the right and left PCA, and the esophageal electrode was introduced through the nose or mouth and advanced into the upper esophagus. On direct visualization of the upper airway, the unshielded catheter electrode entered the esophagus on the right or left side. Cold block of the recurrent laryngeal nerve (RLN) ipsilateral to the esophageal electrode was associated with a marked decrease in recorded activity, whereas cold block of the contralateral RLN resulted only in a small reduction in activity. After supplemental doses of anesthesia were administered, bilateral RLN cold block essentially abolished the activity recorded with the intramuscular electrodes as well as that recorded with the esophageal electrode. Before supplemental doses of anesthesia were given, especially after vagotomy, the esophageal electrode, and in some cases the intramuscular electrodes, recorded phasic inspiratory activity not originating from the PCA. Therefore, one should be cautious in interpreting the activity recorded from esophageal electrodes as originating from the PCA, especially in conditions associated with increased respiratory efforts.


1987 ◽  
Vol 63 (1) ◽  
pp. 229-237 ◽  
Author(s):  
E. van Lunteren

The interactive effects of upper airway negative pressure and hypercapnia on the pattern of breathing were assessed in pentobarbital-anesthetized cats. At any given level of pressure in the upper airway, hypercapnia increased respiratory rate, reduced inspiratory time, and augmented tidal volume, inspiratory airflow, and the peak and rate of rise of diaphragm electrical activity. Conversely, at any given level of CO2, upper airway negative pressure decreased respiratory rate, prolonged inspiratory time, and depressed inspiratory airflow and diaphragm electromyogram (EMG) rate of rise. Application of negative pressure to the upper airway shifted the relationship between tidal volume and inspiratory time upward and rightward. The relationship between inspiratory and expiratory times, however, was linearly correlated over a wide range of chemical drives and levels of upper airway pressure. These results suggest that in the anesthetized cat upper airway negative pressure afferent inputs 1) interact in an additive fashion with hypercapnia to alter the pattern of breathing, 2) interact multiplicatively with CO2 to influence mean inspiratory airflow and diaphragm EMG rate of rise, 3) depress the generation of central inspiratory activity, 4) increase the time-dependent volume threshold for inspiratory termination, and 5) affect the ratio between inspiratory and expiratory times in a similar manner as alterations in PCO2.


Sign in / Sign up

Export Citation Format

Share Document