Interactive effects of CO2 and upper airway negative pressure on breathing pattern

1987 ◽  
Vol 63 (1) ◽  
pp. 229-237 ◽  
Author(s):  
E. van Lunteren

The interactive effects of upper airway negative pressure and hypercapnia on the pattern of breathing were assessed in pentobarbital-anesthetized cats. At any given level of pressure in the upper airway, hypercapnia increased respiratory rate, reduced inspiratory time, and augmented tidal volume, inspiratory airflow, and the peak and rate of rise of diaphragm electrical activity. Conversely, at any given level of CO2, upper airway negative pressure decreased respiratory rate, prolonged inspiratory time, and depressed inspiratory airflow and diaphragm electromyogram (EMG) rate of rise. Application of negative pressure to the upper airway shifted the relationship between tidal volume and inspiratory time upward and rightward. The relationship between inspiratory and expiratory times, however, was linearly correlated over a wide range of chemical drives and levels of upper airway pressure. These results suggest that in the anesthetized cat upper airway negative pressure afferent inputs 1) interact in an additive fashion with hypercapnia to alter the pattern of breathing, 2) interact multiplicatively with CO2 to influence mean inspiratory airflow and diaphragm EMG rate of rise, 3) depress the generation of central inspiratory activity, 4) increase the time-dependent volume threshold for inspiratory termination, and 5) affect the ratio between inspiratory and expiratory times in a similar manner as alterations in PCO2.

1984 ◽  
Vol 56 (3) ◽  
pp. 746-752 ◽  
Author(s):  
E. van Lunteren ◽  
W. B. Van de Graaff ◽  
D. M. Parker ◽  
J. Mitra ◽  
M. A. Haxhiu ◽  
...  

The effects of negative pressure applied to just the upper airway on nasal and laryngeal muscle activity were studied in 14 spontaneously breathing anesthetized dogs. Moving average electromyograms were recorded from the alae nasi (AN) and posterior cricoarytenoid (PCA) muscles and compared with those of the genioglossus (GG) and diaphragm. The duration of inspiration and the length of inspiratory activity of all upper airway muscles was increased in a graded manner proportional to the amount of negative pressure applied. Phasic activation of upper airway muscles preceded inspiratory activity of the diaphragm under control conditions; upper airway negative pressure increased this amount of preactivation. Peak diaphragm activity was unchanged with negative pressure, although the rate of rise of muscle activity decreased. The average increases in peak upper airway muscle activity in response to all levels of negative pressure were 18 +/- 4% for the AN, 27 +/- 7% for the PCA, and 122 +/- 31% for the GG (P less than 0.001). Rates of rise of AN and PCA electrical activity increased at higher levels of negative pressure. Nasal negative pressure affected the AN more than the PCA, while laryngeal negative pressure had the opposite effect. The effects of nasal negative pressure could be abolished by topical anesthesia of the nasal passages, while the effects of laryngeal negative pressure could be abolished by either topical anesthesia of the larynx or section of the superior laryngeal nerve. Electrical stimulation of the superior laryngeal nerve caused depression of AN and PCA activity, and hence does not reproduce the effects of negative pressure.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 65 (1) ◽  
pp. 205-209 ◽  
Author(s):  
D. L. Woodall ◽  
O. P. Mathew

The interaction between CO2 and negative pressure pulses on breathing pattern was investigated in 10 anesthetized, spontaneously breathing rabbits. The upper airway was functionally isolated into a closed system. A servo-respirator triggered by the inspiratory activity of the diaphragm was used to apply pressure pulses of -15 cmH2O to the isolated upper airway in early inspiration while the animal was breathing room air, 100% O2, 6% CO2 in O2, or 9% CO2 in O2. The negative pressure pulses produced a reversible inhibition of inspiration in most trials with resultant increase in inspiratory duration (TI); no change was observed in peak diaphragmatic electromyogram (Dia EMG) or expiratory duration, whereas a decrease was seen in mean inspiratory drive (peak Dia EMG/TI). This prolongation of inspiratory duration and decrease in mean inspiratory drive with negative pressure pulses persisted at higher levels of CO2; the slopes of the test breaths were not significantly different from that of control breaths. These results suggest that upper airway negative pressure pulses are equally effective in altering the breathing pattern at all levels of CO2.


2002 ◽  
Vol 92 (1) ◽  
pp. 269-278 ◽  
Author(s):  
Stephen Ryan ◽  
Walter T. McNicholas ◽  
Ronan G. O'Regan ◽  
Philip Nolan

10.1152/japplphysiol.00413.2001.—Distortion of the upper airway by negative transmural pressure (UANP) causes reflex vagal bradycardia. This requires activation of cardiac vagal preganglionic neurons, which exhibit postinspiratory (PI) discharge. We hypothesized that UANP would also stimulate cranial respiratory motoneurons with PI activity. We recorded 32 respiratory modulated motor units from the recurrent laryngeal nerve of seven decerebrate paralyzed rabbits and recorded their responses to UANP and to withholding lung inflation using a phrenic-triggered ventilator. The phasic inspiratory ( n = 17) and PI ( n = 5) neurons detected were stimulated by −10 cmH2O UANP and by withdrawal of lung inflation ( P < 0.05, Friedman's ANOVA). Expiratory-inspiratory units ( n = 10) were tonically active but transiently inhibited in postinspiration; this inhibition was more pronounced and prolonged during UANP stimuli and during no-inflation tests ( P < 0.05). We conclude that, in addition to increasing inspiratory activity in the recurrent laryngeal nerve, UANP also stimulates units with PI activity.


1992 ◽  
Vol 262 (5) ◽  
pp. R879-R884 ◽  
Author(s):  
A. I. Pack ◽  
R. J. Galante ◽  
A. P. Fishman

Studies were conducted in the African lungfish (Protopterus annectens) to investigate the role of lung inflation on control of the duration of the lung breath. The studies were done in decerebrate spinalectomized animals. Two types of tests were performed: 1) a no-inflation test (airway occluded) in which the lungs were not inflated during an air breath, and 2) an inflation test in which the lungs were inflated at the onset of the lung breath to different levels of intrapulmonary pressure (2.5, 5.0, 7.5, and 10.0 cmH2O). Lung inflation shortened the duration of the lung breath. The relationship between intrapulmonary pressure and breath duration was curvilinear and similar to the relationship between tidal volume and inspiratory duration in mammals. Likewise, the relationship could be described by a hyperbola with a linear relationship between intrapulmonary pressure and the inverse of breath duration. This relationship was essentially not affected by changing the composition of the gas used to inflate the lungs: air, oxygen, or nitrogen. Vagotomy, however, largely abolished the effect of lung inflation on breath duration. Because there is such similarity between these results and effect of lung inflation on control of inspiratory time in mammals, it is postulated that neural circuits for control of respiratory timing were already developed and similar in the lungfish. Because the muscles used in the lungfish to ventilate the lung are totally different (buccal force pump) from those in mammals, the neural circuits for timing control and those for shaping the pattern of motor output appear to be separate.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 56 (2) ◽  
pp. 500-505 ◽  
Author(s):  
O. P. Mathew

Influence of upper airway negative-pressure change on the respiratory activity of various upper airway muscles was investigated in 13 anesthetized rabbits. Phasic inspiratory activity increased or appeared during virtually all negative-pressure trials in nasolabial, cricothyroid, and posterior cricoarytenoid muscles. No phasic inspiratory activity was seen in the sternothyroid (ST) and sternohyoid (SH) muscles before negative-pressure applications but appeared during 80% of trials in ST and 62% of trials in SH. During maintained negative pressure, a gradual decline in activity was often observed in the nasolabial and laryngeal muscles, whereas a rapid decline in activity was seen in the cervical strap muscles. Reflex effects of negative pressure was markedly reduced or abolished by sectioning the internal branch of the superior laryngeal nerve bilaterally. Reflex augmentation of upper airway muscle activity reported here may have functional significance in the maintenance of upper airway patency. It could prevent upper airway collapse when negative pressure swings in the upper airway increase or facilitate recovery when large negative pressure swings are produced by obstructed inspiratory efforts.


1991 ◽  
Vol 70 (5) ◽  
pp. 2233-2241 ◽  
Author(s):  
J. R. Wheatley ◽  
A. Brancatisano ◽  
L. A. Engel

To examine the response of the cricothyroid muscle (CT) to increased chemical drive, we measured its electromyogram simultaneously with that of the alae nasi (AN) in seven normal awake subjects. During both progressive hyperoxic hypercapnia and hypoxia, peak integrated inspiratory activity (moving time average, MTA) of the CT and AN increased as a power function of mean inspiratory flow (ratio of tidal volume to inspiratory time, VT/TI), given by MTA = a(VT/TI)b + c (where a, b, and c are constants). The exponent b varied from 0.009 to 3.4 among subjects but was correlated between CT and AN both during hypercapnia (r = 0.86) and hypoxia (r = 0.81). The onset of inspiratory activity of the CT and AN preceded that of inspiratory flow. Expressed as a percentage of expiratory time, the CT lead time rose from 7% at rest to 20% during hyperpnea. The corresponding values for the AN were from 22 to 52% (both P less than 0.03). Thus the pattern of response of the CT and AN is similar and related to that of the inspiratory muscles in a curvilinear manner. The findings suggest that during chemical stimulation the electrical activity of the CT is analogous to that of the AN, an upper airway dilator.


1990 ◽  
Vol 68 (5) ◽  
pp. 1875-1882 ◽  
Author(s):  
C. M. Hesser ◽  
F. Lind ◽  
D. Linnarsson

The effects of increased airway resistance on lung volumes and pattern of breathing were studied in eight subjects performing leg exercise on a cycle ergometer. Airway resistance was changed 1) by increasing the density (D) of the respired gas by a factor of 4.2 and changing the inspired gas from O2 at 1.3 bar to air at 6 bar and 2) by increasing airway flow rates by exposing the subjects to incremental work loads of 0-200 W. Increased gas D caused a slower and deeper respiration at rest and during exercise and, at work loads greater than 120 W, depressed the responses of ventilation and mean inspiratory flow. Raised airway resistance induced by increases in D and/or airway flow rates altered respiratory timing by increasing the ratio of inspiratory time (TI) to total breath duration. Furthermore, analyses of the relationships between tidal volume and TI and between end-inspiratory volume and TI revealed elevation of Hering-Breuer inspiratory volume thresholds. We propose that this elevation, and hence exercise-induced increases of tidal volume, can largely be explained by previous observations that the threshold of the inspiratory off-switch mechanisms depends on central inspiratory activity (cf. C. von Euler, J. Appl. Physiol. 55: 1647-1659, 1983), which in turn increases with airway resistance (Acta Physiol. Scand. 120: 557-565, 1984).


1982 ◽  
Vol 243 (1) ◽  
pp. R164-R169
Author(s):  
G. G. Haddad ◽  
T. L. Lai ◽  
M. A. Epstein ◽  
R. A. Epstein ◽  
K. F. Yu ◽  
...  

Ventilatory measurements were made noninvasively over 2- to 3-h periods during sleep in each of nine normal infants at 1 mo of age. To assess the changes that occur in ventilation on a breath-to-breath basis, we 1) examined the variations of each of tidal volume (VT), respiratory cycle time (Ttot), expiratory time (TE), and inspiratory time (TI) and 2) studied their interrelationships. We found that the variations of VT, Ttot, and TE but not of TI were significantly greater in rapid-eye-movement (REM) than in quiet sleep. In addition, on a breath-to-breath basis, VT had a positive linear relationship and strong correlation with TI; however, the correlation between VT and TE was weak in both sleep states. VT/Ttot was found to be moderately and negatively correlated with Ttot in both REM and quiet sleep. VT was weakly correlated with Ttot in REM sleep and was, on the average, more correlated with Ttot in quiet sleep. We suggest that in infants 1) on a breath-to-breath basis, VT/Ttot is likely to drop if respiratory frequency is decreased and 2) VT is nonlinearly related to Ttot during sleep; this lack of linearity depends on the lack of constancy of VT/Ttot, which is in turn closely related to the variability of the "on-switching" of inspiratory activity.


1978 ◽  
Vol 45 (1) ◽  
pp. 80-86 ◽  
Author(s):  
M. K. Younes ◽  
J. E. Remmers ◽  
J. Baker

The dependence of phrenic efferent discharge on vagal-volume feedback was examined in barbiturate-anesthetized, paralyzed cats ventilated by a phrenic-driven servo respirator. The characteristics of the respiratory were altered for a single breath, and the resulting change in phrenic activity was quantitated by comparison with phrenic activity without phasic volume feedback. The relation between volume feedback and phrenic inhibition was determined both when inspiratory termination occurred during the rising phase of phrenic discharge and during the plateau observed with barbiturate-induced apneusis. Inhibition of inspiratory activity occurred only when lung volume exceeded a time-dependent threshold. Above this threshold, andextending over a substantial volume range, volume feedback caused graded and reversible inhibition of phrenic discharge. The threshold for graded inhibition declined progressively during the inspiratory phase, showing no obvious relation to the level of inspiratory activity. At any particular time, the relation between volume and phrenic inhibition was convex to the volume axis, and the slope of the relationship increased with inspiratory time. The results indicate that a) volume feedback inhibits inspiration in a graded manner, b) partial inhibition of phrenic activity renders it more susceptible to additional inhibition, and c) inhibitory effectiveness of volume feedback increases with time.


1985 ◽  
Vol 59 (3) ◽  
pp. 869-874 ◽  
Author(s):  
M. A. Bureau ◽  
J. Lamarche ◽  
P. Foulon ◽  
D. Dalle

The contribution of the carotid body chemoreceptor to postnatal maturation of breathing was evaluated in lambs from 7 to 70 days of age. The study was conducted by comparing the eupneic ventilation and resting pneumograms in intact conscious lambs with those of lambs that were carotid body chemodenervated (CBD) at birth. In comparison to the 1-wk-old intact lambs, the CBD lambs had significant decreases in minute ventilation (VE, 313 vs. 517 ml/kg), tidal volume (VT, 7.2 vs. 10.5 ml/kg), respiratory rate (f, 44 vs. 51 breaths/min), and occlusion pressure (P0.1, 2.8 vs. 7.2 cmH2O). Arterial PO2's were 59 vs. 75 Torr (P less than 0.05) and arterial PCO2's 47 vs. 36 Torr (P less than 0.05), respectively, in CBD and intact lambs. In intact lambs from 7 to 70 days, resting VE decreased progressively from 517 to 274 ml/kg (P less than 0.01) due to a fall in VT, mean inspiratory flow (VT/TI), and f, whereas the ratio of inspiratory time to total breath duration remained constant. P0.1 decreased from 7.2 to 3.9 cmH2O from 7 to 42 days. In contrast the CBD lambs experienced only minimal changes in VE, VT, VT/TI, and f during the same period. VE only decreased from 313 to 218 and P0.1 from 2.8 to 2.4 cmH2O. In contrast to that of intact lambs the resting pneumogram of CBD lambs remained relatively fixed from 7 to 70 days. Three CBD lambs died unexpectedly, without apparent cause, in the 4th and 5th wk of life.


Sign in / Sign up

Export Citation Format

Share Document