An Evaluation of Sterilisation Processes

2008 ◽  
Vol 36 (5) ◽  
pp. 585-590 ◽  
Author(s):  
Dariusz Śladowski ◽  
Iwona Grabska-Liberek ◽  
Joanna Olkowska-Truchanowicz ◽  
Kamil Lipski ◽  
Grzegorz Gut

A sterile environment is one of the basic elements of in vitro cell culture. When choosing an appropriate sterilisation method, the possibility that the physical and chemical properties of the sterilised material could be altered by the sterilisation process itself, should be considered. Avoiding any potential problems of toxicity arising as a consequence of the sterilisation process is essential, not only in in vitro cell culture procedures, but especially in the case of the sterilisation of medical devices which come into contact with human tissue (e.g. catheters, surgical tools, and containers used for transplant preparation and storage). As it is not possible to predict the potential effects of every combination of test material and sterilisation process, we have designed a simple test, which can be easily performed to ensure the absence of cytotoxicity. The test involves the culturing of a non-adherent cell line in direct contact with the test material, in micro-wells attached to the surface of the test device. By using this novel test method, three sterilisation procedures were compared for each material. The results indicated that, neither ionising irradiation nor ethylene oxide left toxic residues on the surface of polystyrene; and that, in the case of steel, neither steam sterilisation nor ethylene oxide left toxic residues on the metal. The cold plasma system, which left toxic residues on the surface of both materials, required a post-sterilisation period of 24 hours in the case of steel, and 10 days in the case of polystyrene, in order to eliminate toxic residues prior to their use.

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Donghoon Kang ◽  
Natalia V. Kirienko

Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2998
Author(s):  
Mohammed Nadeem Bijle ◽  
Manikandan Ekambaram ◽  
Edward Lo ◽  
Cynthia Yiu

The in vitro study objectives were to investigate the effect of arginine (Arg) incorporation in a 5% sodium fluoride (NaF) varnish on its physical and chemical properties including F/Arg release. Six experimental formulations were prepared with L-arginine (L-Arg) and L-arginine monohydrochloride at 2%, 4%, and 8% w/v in a 5% NaF varnish, which served as a control. The varnishes were subjected to assessments for adhesion, viscosity, and NaF extraction. Molecular dynamics were simulated to identify post-dynamics total energy for NaF=Arg/Arg>NaF/Arg<NaF concentrations. The Arg/F varnish release profiles were determined in polyacrylic lactate buffer (pH-4.5; 7 days) and artificial saliva (pH-7; 1 h, 24 h, and 12 weeks). Incorporation of L-Arg in NaF varnish significantly influences physical properties ameliorating retention (p < 0.001). L-Arg in NaF varnish institutes the Arg-F complex. Molecular dynamics suggests that NaF>Arg concentration denotes the stabilized environment compared to NaF<Arg (p < 0.001). The 2% Arg-NaF exhibits periodic perennial Arg/F release and shows significantly higher integrated mean F release than NaF (p < 0.001). Incorporating 2% L-arginine in 5% NaF varnish improves its physical properties and renders a stable matrix with enduring higher F/Arg release than control.


2013 ◽  
Vol 45 (4) ◽  
pp. 325 ◽  
Author(s):  
Anurupa Maitra ◽  
Shahnaz Patel ◽  
VijayR Bhate ◽  
VilliS Toddywalla ◽  
MaithiliA Athavale

Sign in / Sign up

Export Citation Format

Share Document