Ten Years of REACH — An Animal Protection Perspective

2018 ◽  
Vol 46 (6) ◽  
pp. 347-373 ◽  
Author(s):  
Katy Taylor

It has now been 11 years since the EU's new chemicals legislation ( Regulation No. 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals [REACH]) came into force. Two important statements in the REACH Regulation in relation to animal testing and alternatives are: Article 1(1), which states that one of its purposes is to promote alternative methods; and Article 25(1), which states that animal testing should be used as a last resort. This review looks at the mechanisms that were put in place within REACH to achieve these aims and asks, not only if they are being implemented properly, but also if they have been sufficient. Whilst the chemical industry has heavily used data-sharing and read-across, this review concludes that nevertheless over 2.2 million animals have already been used in new tests for REACH registrations. This equates to an annual average of 275,000 animals; 58,000 more per year than the best-case estimate made by the European Commission in 2004. The use of in vitro and (Q)SAR approaches as standalone replacements for animal tests has been relatively low. The levels of funding for research into alternative methods remain low, and there are concerns over the speed of formal adoption of those that have been validated. In addition, there have been issues with the recognition that testing as a last resort and the promotion of alternative methods applies to all parties, including the Commission, Member States and the agency responsible, the European Chemicals Agency. This review provides ten recommendations for better implementation of these two key aspirations, as well as lessons to be learned for future similar legislation.

1997 ◽  
Vol 25 (3) ◽  
pp. 343-345
Author(s):  
Ethel Thurston

The Multicenter Evaluation of In Vitro Cytotoxicity programme is most important to animal protection, since it has validated 64 in vitro tests using advanced human data for 50 chemicals as the “gold standard”. Therefore, it has been able to compare animal cell tests, human cell tests and whole-animal tests fairly with unbiased scientific evidence. Added bonuses have included the identification and development of missing in vitro information (“missing tests”), publication of time-related lethal blood concentrations for all 50 chemicals, and some preliminary plans to resolve the 50,000 untested (or poorly tested) chemicals in the chemical mountain.


2008 ◽  
Vol 36 (1_suppl) ◽  
pp. 29-42 ◽  
Author(s):  
Christina Grindon ◽  
Robert Combes ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

Liverpool John Moores University and FRAME recently conducted a research project sponsored by Defra on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for using alternative methods (both in vitro and in silico) for environmental (aquatic) toxicity testing. The manuscript reviews tests based on fish cells and cell lines, fish embryos, lower organisms, and the many expert systems and QSARs for aquatic toxicity testing. Ways in which reduction and refinement measures can be used are also discussed, including the Upper Threshold Concentration — Step Down (UTC) approach, which has recently been retrospectively validated by ECVAM and subsequently endorsed by the ECVAM Scientific Advisory Committee (ESAC). It is hoped that the application of this approach could reduce the number of fish used in acute toxicity studies by around 65–70%. Decision-tree style integrated testing strategies are also proposed for acute aquatic toxicity and chronic toxicity (including bioaccumulation), followed by a number of recommendations for the future facilitation of aquatic toxicity testing with respect to environmental risk assessment.


2010 ◽  
Vol 29 (1) ◽  
pp. 11-14 ◽  
Author(s):  
Robert F Phalen

Toxicity Testing in the 21st Century: A Vision and a Strategy (NRC, 2007) presents a bold plan for chemical toxicity testing that replaces whole-animal tests with cell-culture, genetic, other in-vitro techniques, computational methods, and human monitoring. Although the proposed vision is eloquently described, and recent advances in in-vitro and in-silico methods are impressive, it is difficult believe that replacing in-vitro testing is either practical or wise. It is not clear that the toxicity-related events that occur in whole animals can be adequately replicated using the proposed methods. Protecting public health is a serious endeavor that should not be limited by denying animal testing. Toxicologists and regulators are encouraged to read the report, carefully consider its implications, and share their thoughts. The vision is for too important to ignore.


1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 19-22
Author(s):  
Marcel B. Roberfroid ◽  
Fabienne Goethals

Foreword — Animal experimentation is an emotional topic, which arouses passionate feelings both in animal protection groups and in the scientific community. For many years, antivivisectionists have fought for the abolition of all animal experimentation, whereas other groups campaign for suppression/reduction of the level of pain animals suffer because of experimentation. Despite all these efforts, the number of animals used in scientific research does not seem to have decreased significantly during the last few years. At best, this number remains constant or shows minor reductions in some countries, whereas in others it is still increasing. In addition to this situation, which certainly does not satisfy the antivivisectionists, the validity of the use of animal models in biomedical research is increasingly being questioned. On the other hand, a number of developments and projects exist which attest to the growing interest of scientists in in vitro models which use few, or even no, animals. Such a change in attitude is particularly evident in practice and research in toxicology, which uses a large number of animals. Taking into account the special status of toxicology among the biomedical sciences, since its practice is required and defined by laws and directives, a semantic problem exists over which adjective should be applied to describe such new methods. For some, it must be alternative — for consistancy to underline the possibility of replacing classical in vivo tests with new in vitro tests, the validity of which is demonstrated by reference to these in vivo tests. For others, it has to be complementary — to characterise the new protocols and the new experimental models which are of interest, because they contribute to the improvement of toxicology by strengthening its scientific nature. For a third group, it must be adjunct — to emphasise the relatively minor role of non-animal tests in relation to the conventional animal tests. It is the second concept that is favoured in this article. The experimental models to which it applies will, according to the Three Rs of Russell & Burch (1), lead either to the replacement of animal models, or to a reduction in the number of animals used or to refinement of test procedures in order to minimise the suffering and stress caused to animals.


2021 ◽  
Vol 22 (2) ◽  
pp. 520
Author(s):  
Aleksandra Majewska ◽  
Kinga Wilkus ◽  
Klaudia Brodaczewska ◽  
Claudine Kieda

Endothelial cells (ECs) lining the blood vessels are important players in many biological phenomena but are crucial in hypoxia-dependent diseases where their deregulation contributes to pathology. On the other hand, processes mediated by ECs, such as angiogenesis, vessel permeability, interactions with cells and factors circulating in the blood, maintain homeostasis of the organism. Understanding the diversity and heterogeneity of ECs in different tissues and during various biological processes is crucial in biomedical research to properly develop our knowledge on many diseases, including cancer. Here, we review the most important aspects related to ECs’ heterogeneity and list the available in vitro tools to study different angiogenesis-related pathologies. We focus on the relationship between functions of ECs and their organo-specificity but also point to how the microenvironment, mainly hypoxia, shapes their activity. We believe that taking into account the specific features of ECs that are relevant to the object of the study (organ or disease state), especially in a simplified in vitro setting, is important to truly depict the biology of endothelium and its consequences. This is possible in many instances with the use of proper in vitro tools as alternative methods to animal testing.


2000 ◽  
Vol 28 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Stephan Zinke ◽  
Ingrid Gerner ◽  
Gabriele Graetschel ◽  
Eva Schlede

The notification procedure for new chemicals of the European Union (EU) requires protocols on physicochemical and toxicological tests for the evaluation of physico-chemical properties and probable toxic effects of each notified substance. In order to reduce the amount of animal testing, alternative methods should be introduced into toxicity testing. Therefore, we have developed a rule-based decision support system (DSS) for the prediction of the local corrosive/irritant properties of new chemicals. To this end, data on more than 1000 substances were examined, which resulted in approximtely 180 “exception-rules” of the kind IF (physicochemical property) A THEN not (toxic) Effect B. In addition, the structural formulae of the chemicals were analysed, which resulted in approximately 160 “structure-rules” of the kind IF Substructure A THEN Effect B. The DSS can predict (based on theoretical structure-activity relationships) whether a chemical produces: a) corrosive effects (i.e. no testing is necessary; b) might have corrosive effects (i.e. no animal testing, in vitro tests are suitable); and c) will produce no effects or only marginal effects (i.e. animal tests are necessary based on current EU legislation for hazard assessment purposes). In addition, the DSS provides reliable data for legal classification and labelling based on a specific result.


1998 ◽  
Vol 26 (5) ◽  
pp. 709-720 ◽  
Author(s):  
Andrew P. Worth ◽  
Julia H. Fentem ◽  
Michael Balls ◽  
Philip A. Botham ◽  
Rodger D. Curren ◽  
...  

The use of testing strategies which incorporate a range of alternative methods and which use animals only as a last resort is widely considered to provide a reliable way of predicting chemical toxicity while minimising animal testing. The widespread concern over the severity of the Draize rabbit test for assessing skin irritation and corrosion led to the proposal of a stepwise testing strategy at an OECD workshop in January 1996. Subsequently, the proposed testing strategy was adopted, with minor modifications, by the OECD Advisory Group on Harmonization of Classification and Labelling. This article reports an evaluation of the proposed OECD testing strategy as it relates to the classification of skin corrosives. By using a set of 60 chemicals, an assessment was made of the effect of applying three steps in the strategy, taken both individually and in sequence. The results indicate that chemicals can be classified as corrosive (C) or non-corrosive (NC) with sufficient reliability by the sequential application of three alternative methods, i.e., structure-activity relationships (where available), pH measurements, and a single in vitro method (either the rat skin transcutaneous electrical resistance (TER) assay or the EPISKIN™ assay). It is concluded that the proposed OECD strategy for skin corrosion can be simplified without compromising its predictivity. For example, it does not appear necessary to measure acid/alkali reserve (buffering capacity) in addition to pH for the classification of pure chemicals.


2008 ◽  
Vol 36 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Christina Grindon ◽  
Robert Combes ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

Liverpool John Moores University and FRAME conducted a research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for the use of alternative methods (both in vitro and in silico) in developmental and reproductive toxicity testing. It considers many tests based on primary cells and cell lines, and the available expert systems and QSARs for developmental and reproductive toxicity, and also covers tests for endocrine disruption. Ways in which reduction and refinement measures can be used are also discussed, particularly the use of an enhanced one-generation reproductive study, which could potentially replace the two-generation study, and therefore considerably reduce the number of animals required in reproductive toxicity. Decision-tree style integrated testing strategies are also proposed for developmental and reproductive toxicity and for endocrine disruption, followed by a number of recommendations for the future facilitation of developmental and reproductive toxicity testing, with respect to human risk assessment.


2008 ◽  
Vol 36 (1_suppl) ◽  
pp. 65-74
Author(s):  
Christina Grindon ◽  
Robert Combes ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

Liverpool John Moores University and FRAME recently conducted a research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This report focuses on how to maximise the use of alternative methods (both in vitro and in silico) for skin corrosion and irritation testing within a tiered testing strategy. It considers the latest developments in in vitro testing, with particular reference to the reconstituted skin models which have now been now been successfully validated and independently endorsed as suitable for both skin corrosivity and irritancy testing within the EU.


2020 ◽  
Vol 74 (3) ◽  
pp. 168-175
Author(s):  
Heike Laue ◽  
Lu Hostettler ◽  
Gordon Sanders ◽  
Georg Kreutzer ◽  
Andreas Natsch

The determination of persistence (P), bioaccumulation (B) and toxicity (T) plays a central role in the environmental assessment of chemicals. Persistence is typically evaluated via standard microbial biodegradation tests. Bioaccumulation refers to the accumulation of chemicals in organisms and is usually assessed in fish exposed to the test chemical. Toxicity is determined at three trophic levels, with fish toxicity as the highest trophic level assessed. Thus, animal tests are classically needed for both B and T assessment. In vitro systems based on fish liver cells or liver S9 fractions ('RT-S9 assay') have been recently adopted by OECD to measure the biotransformation rates for the chemicals for B assessment. Biotransformation drives clearance from the body and reduces bioaccumulation. For T assessment, an assay based on in vitro toxicity on fish gill cells has been established ('RTgill-W1 assay'). Here we summarize our findings indicating that these tests are highly predictive for fragrance ingredients, and show with two case studies of our latest new registered substances how we apply these tests in particular during development and also for chemical registration. This platform of tests (PeBiToSens™) could fully replace animal tests in ecotoxicological assessment and is key in the Givaudan Safe by Design™ approach to develop safer and environmentally compatible novel fragrance ingredients.


Sign in / Sign up

Export Citation Format

Share Document