Book Review: Progress in Clinical and Biological Research Volume 374: Relevance of Animal Studies to the Evaluation of Human Cancer Risk

1994 ◽  
Vol 22 (1) ◽  
pp. 56-57
Author(s):  
Joanne Harrison
2011 ◽  
pp. 131-140
Author(s):  
Sandra Eliasz ◽  
Michele Carbone ◽  
Maurizio Bocchetta

Since its discovery in 1960 as a contaminant of poliovaccines, Simian Virus 40 (SV40) has been the object of extensive studies to assess whether this oncogenic virus plays a role in human carcinogenesis. Over the last two decades, this question has met with broad scepticism. However, there is increasing evidence linking SV40 to specific types of human cancer, especially malignant mesothelioma. Recently, two laboratories using different experimental approaches independently confirmed that SV40 acts synergistically with environmental fibers to promote mesothelial cell transformation and mesothelioma. Most of the scepticism concerning SV40 and cancer was due to the lack of clear epidemiologic data. However, it is still not clear how SV40 circulates in the human population, making the identification of SV40-exposed versus non-exposed cohorts problematic. Consequently, the most helpful insights into SV40-mediated carcinogenesis have come from molecular pathology, cell and molecular biology, and from animal studies.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1586
Author(s):  
Leonie R. Price ◽  
Javier Martinez

The emergence of new tobacco heating products and electronic nicotine delivery systems (ENDS) is changing the way humans are exposed to nicotine. The purpose of this narrative review is to provide a broad overview of published scientific literature with respect to the effects of nicotine on three key health-related areas: 1) cardiovascular risk, 2) carcinogenesis and 3) reproductive outcomes. These areas are known to be particularly vulnerable to the effects of cigarette smoke, and in addition, nicotine has been hypothesized to play a role in disease pathogenesis. Acute toxicity will also be discussed. The literature to February 2019 suggests that there is no increased cardiovascular risk of nicotine exposure in consumers who have no underlying cardiovascular pathology. There is scientific consensus that nicotine is not a direct or complete carcinogen, however, it remains to be established whether it plays some role in human cancer propagation and metastasis. These cancer progression pathways have been proposed in models in vitro and in transgenic rodent lines in vivo but have not been demonstrated in cases of human cancer. Further studies are needed to determine whether nicotine is linked to decreased fertility in humans. The results from animal studies indicate that nicotine has the potential to act across many mechanisms during fetal development. More studies are needed to address questions regarding nicotine exposure in humans, and this may lead to additional guidance concerning new ENDS entering the market.


2018 ◽  
Vol 121 ◽  
pp. 169-177 ◽  
Author(s):  
Jian Wang ◽  
Kang Xia ◽  
Michael Gatheru Waigi ◽  
Yanzheng Gao ◽  
Emmanuel Stephen Odinga ◽  
...  

2002 ◽  
Vol 30 (4) ◽  
pp. 459-465 ◽  
Author(s):  
Elizabeth S. Jenkins ◽  
Caren Broadhead ◽  
Robert D. Combes

Microarray technology has the potential to affect the number of laboratory animals used, the severity of animal experiments, and the development of non-animal alternatives in several areas of scientific research. Microarrays can contain hundreds or thousands of microscopic spots of DNA, immobilised on a solid support, and their use enables global patterns of gene expression to be determined in a single experiment. This technology is being used to improve our understanding of the operation of biological systems during health and disease, and their responses to chemical insults. Although it is impossible to predict with certainty any future trends regarding animal use, microarray technology might not initially reduce animal use, as is often claimed to be the case. The accelerated pace of research as a result of the use of microarrays could increase overall animal use in basic and applied biological research, by increasing the numbers of interesting genes identified for further analysis, and the number of potential targets for drug development. Each new lead will require further evaluation in studies that could involve animals. In toxicity testing, microarray studies could lead to increases in animal studies, if further confirmatory and other studies are performed. However, before such technology can be used more extensively, several technical problems need to be overcome, and the relevance of the data to biological processes needs to be assessed. Were microarray technology to be used in the manner envisaged by its protagonists, there need to be efforts to increase the likelihood that its application will create new opportunities for reducing, refining and replacing animal use. This comment is a critical assessment of the possible implications of the application of microarray technology on animal experimentation in various research areas, and makes some recommendations for maximising the application of the Three Rs.


Sign in / Sign up

Export Citation Format

Share Document