Species-specific Effects of Nitromethylene Heterocycle Insecticides on Nicotinic Receptors in Locust Neurons and Mouse N1E-115 and BC3H1 Cells

1994 ◽  
Vol 22 (6) ◽  
pp. 454-461
Author(s):  
Marga Oortgiesen ◽  
Ruud Zwart ◽  
Henk P.M. Vijverberg

The effects of nitromethylene heterocycle (NMH) insecticides on subtypes of nicotinic acetylcholine (nACh) receptors were investigated in locust thoracic ganglion neurons, mouse N1E-115 neuroblastoma cells, and mouse BC3H1 muscle cells by using electrophysiological techniques. In locust neurons, all of the six NMH insecticides tested induced transient inward currents resembling nicotinic ACh-induced inward currents, while, in the continued presence of the NMH compounds, the ACh-induced inward current was blocked. The amplitude of the inward current and the blocking effects of the NMH insecticides were enhanced by concentrations between 0.1 and 10μM. Cross-desensitisation with the ACh-induced inward current confirmed that the NMH-induced inward current was governed by the activation of nACh receptors. Mammalian endplate type nACh receptors in BC3H1 cells and mammalian neuronal type nACh receptors in N1E-115 cells were much less sensitive to the NMH insecticides than the locust neuronal nACh receptors. At a concentration of 10μM, which blocked 80–100% of the ACh-induced inward current in locust neurons, NMH insecticides only partially blocked the ACh-induced inward currents mediated by the two subtypes of mammalian nACh receptors. NMH insecticides also failed to induce significant agonist effects in the mammalian cells at this concentration. The results provide a possible explanation for the selectively greater toxicity of NMH insecticides to insects than to vertebrates, at the level of nACh receptor subtypes and, hence, demonstrate that this in vitro approach is valuable for the investigation of species-specific interactions of compounds at their target site.

2019 ◽  
Author(s):  
Aida Revilla-García ◽  
Cristina Fernández ◽  
María Moreno-del Álamo ◽  
Vivian de los Ríos ◽  
Ina M. Vorberg ◽  
...  

AbstractRepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent to mitochondria impairment in human cells affected by neurodegeneration. To fulfil all the features of a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1(WT) and assayed its response to co-incubation with in vitro assembled RepA-WH1(A31V) amyloid fibres. In parallel, cells releasing RepA-WH1(A31V) aggregates were co-cultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibres and the extracellular RepA-WH1(A31V) aggregates induce, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells point to alterations in mitochondria, protein quality triage, signalling and intracellular traffic.Summary blurbThe horizontal, cell-to-cell spread of a bacterial prion-like protein is shown for the first time in mammalian cells. Amyloid cross-aggregation of distinct variants, and their associated toxicities, follow the same trend found in bacteria, underlining the universality of prion biology.


1995 ◽  
Vol 74 (4) ◽  
pp. 1485-1497 ◽  
Author(s):  
J. Schmidt ◽  
S. Gramoll ◽  
R. L. Calabrese

1. The effects of Phe-Met-Arg-Phe (FMRF)amide (10(-6) M) on membrane properties of heart interneurons in the third, fourth, and fifth segmental ganglia [HN(3), HN(4), and HN(5) cells, respectively] of the leech were studied using discontinuous current-clamp and single-electrode voltage-clamp techniques. FMRFamide was focally applied onto the soma of the cell under investigation. 2. Application of FMRFamide depolarized HN(3) and HN(4) cells by evoking an inward current. These responses were subject to pronounced desensitization. The inward currents evoked by application of FMRFamide were associated with an increase in membrane conductance and appeared to be voltage dependent. Currents were enhanced at more depolarized potentials. 3. The responsiveness of the HN(3) and HN(4) cells was not affected when the Ca2+ concentration in the bath saline was reduced from normal (1.8 mM) to 0.1 mM. The depolarizing response on application of FMRFamide was blocked when Co2+ was substituted for Ca2+. 4. HN(3) and HN(4) cells did not respond to FMRFamide application in Na(+)-free solution. Inward currents were largely reduced when bath saline with 30% of the normal Na+ concentration was used. When Li+ was substituted for Na+ in the saline, application of FMRFamide still evoked depolarizing responses in HN(3) and HN(4) cells. 5. We conclude that focal application of FMRFamide onto the somata of HN(3) and HN(4) cells evokes a voltage-dependent inward current, carried largely by Na+. 6. Focal application of FMRFamide onto somata of HN(5) cells hyperpolarized these cells by activating a voltage-dependent outward current. 7. HN(5) cells were loaded with Cl- until inhibitory postsynaptic potentials carried by Cl- reversed. Cl(-)-loaded cells still responded with a hyperpolarization when FMRFamide was applied onto their somata. Therefore the outward current evoked by FMRFamide appears to be mediated by a K+ conductance increase. 8. Application of FMRFamide onto the somata of HN(5) cells enhanced outward currents that were evoked by depolarizing voltage steps from a holding potential of -45 mV. 9. We conclude that the hyperpolarizing response of HN(5) cells to focal application of FMRFamide onto their somata is the result of an up-regulation of a voltage-dependent K+ current.


2002 ◽  
Vol 80 (6) ◽  
pp. 745-755 ◽  
Author(s):  
Kyra J Cowan ◽  
Kenneth B Storey

The effects of 300 mM urea or 300 mM KCl on the maximal activities of 25 enzymes of intermediary metabolism were assessed in extracts of liver and muscle from spadefoot toads (Scaphiopus couchii), leopard frogs (Rana pipiens), and rats to assess their sensitivity to these osmolytes. During estivation, toads can lose ~50% of total body water, and urea, which is known for its action as a protein denaturant, accumulates to 200–300 mM. The data show that the maximal activities of toad liver enzymes were not affected when assayed in the presence of 300 mM urea in vitro whereas urea inhibited the activities of seven enzymes in frog and 11 enzymes in rat liver. High KCl affected 12 or 13 enzymes in liver of each species causing inhibition in eight or nine cases each, and for frog and rat enzymes, inhibition was frequently more pronounced than for urea. Both urea and KCl affected enzyme activities in muscle extracts of all three species, but whereas their effects were largely negative for frog and rat enzymes, the enzymes affected by urea or KCl in toad muscle were primarily activated by these osmolytes (six out of nine enzymes affected by urea and eight of 15 enzymes affected by KCl). Urea, KCl, and polyethylene glycol (a protein crowding agent) also had species-specific effects on the dissociation constant (Ka) for cAMP of protein kinase A. The data suggest that the accumulation of urea by water-stressed anurans not only contributes to minimizing cell volume reduction, but by doing so also limits the increase in intracellular ionic strength that occurs and thereby helps to minimize the potential inhibitory effects of high salts on metabolic enzymes.Key words: estivation, desiccation, urea, polyethylene glycol, spadefoot toad, leopard frog.


1996 ◽  
Vol 16 (9) ◽  
pp. 5069-5080 ◽  
Author(s):  
R Kozma ◽  
S Ahmed ◽  
A Best ◽  
L Lim

n-Chimaerin is a GTPase-activating protein (GAP) mainly for Rac1 and less so for Cdc42Hs in vitro. The GAP activity of n-chimaerin is regulated by phospholipids and phorbol esters. Microinjection of Rac1 and Cdc42Hs into mammalian cells induces formation of the actin-based structures lamellipodia and filopodia, respectively, with the former being prevented by coinjection of the chimaerin GAP domain. Strikingly, microinjection of the full-length n-chimaerin into fibroblasts and neuroblastoma cells induces the simultaneous formation of lamellipodia and filopodia. These structures undergo cycles of dissolution and formation, resembling natural morphological events occurring at the leading edge of fibroblasts and neuronal growth cones. The effects of n-chimaerin on formation of lamellipodia and filopodia were inhibited by dominant negative Rac1(T17N) and Cdc42Hs(T17N), respectively. n-Chimaerin's effects were also inhibited by coinjection with Rho GDP dissociation inhibitor or by treatment with phorbol ester. A mutant n-chimaerin with no GAP activity and impaired p21 binding was ineffective in inducing morphological changes, while a mutant lacking GAP activity alone was effective. Microinjected n-chimaerin colocalized in situ with F-actin. Taken together, these results suggest that n-chimaerin acts synergistically with Rac1 and Cdc42Hs to induce actin-based morphological changes and that this action involves Rac1 and Cdc42Hs binding but not GAP activity. Thus, GAPs may have morphological functions in addition to downregulation of GTPases.


2004 ◽  
Vol 92 (1) ◽  
pp. 433-443 ◽  
Author(s):  
C. Peter Bengtson ◽  
David J. Lee ◽  
Peregrine B. Osborne

The ventral pallidum in rat is a basal forebrain structure that contains neurons that project in the limbic striatopallidal circuitry and magnocellular cholinergic corticopetal neurons. Because 5-hydroxytryptamine (5-HT) terminals on dorsal raphe projections form close appositions with these neurons, we made patch-clamp recordings in immature rat brain slices to determine whether they are modulated by postsynaptic 5-HT receptors. Inward currents were predominantly induced by 5-HT in noncholinergic neurons, which were distinguished from cholinergic neurons by immunohistochemical and electrophysiological criteria. The inward current induced by 5-HT was mimicked and occluded when adenylyl cyclase was stimulated with forskolin, and was almost abolished when h-currents in noncholinergic neurons were blocked with cesium. Consistent with 5-HT7 receptor activation of h-curents by cAMP in other brain regions, we found inward currents were mimicked by the mixed 5-HT1/5-HT7 agonists 5-methoxytryptamine, and by 5-carboxamidotryptamine (5-CT), which was more potent than 5-HT. In contrast, 5-HT1 preferring 8-OH-DPAT was a weak partial agonist, and the 5-HT1–selective antagonist pindolol had no effect. However, despite this profile, antagonists that bind at the 5-HT7 receptor only partly reduced the agonist inward current (SB-269970 and clozapine), or had no effect (mianserin and pimozide). We found in cholinergic neurons that 5-HT predominantly induced hyperpolarizing currents, which were carried by potassium channels, and were smaller than currents induced by 8-OH-DPAT and 5-CT. We conclude from this study that ascending 5-HT projections from the dorsal raphe could have direct and opposite effects on the activities of neurons within the limbic striatopallidal and cholinergic corticopetal circuitry in the ventral pallidum.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Aida Revilla-García ◽  
Cristina Fernández ◽  
María Moreno-del Álamo ◽  
Vivian de los Ríos ◽  
Ina M. Vorberg ◽  
...  

ABSTRACT RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways. IMPORTANCE Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation.


1995 ◽  
Vol 269 (6) ◽  
pp. G981-G987 ◽  
Author(s):  
J. Lin ◽  
J. Krier

The actions of human recombinant interleukin-1 beta (hrIL-1 beta) were tested on guinea pig pelvic plexus ganglion neurons using intracellular electrophysiological methods in vitro. hrIL-1 beta caused membrane depolarization associated with a decreased input resistance or inward currents in 54% of neurons tested. hrIL-1 beta caused a hyperpolarization associated with an increase in input resistance or outward currents in 30% of neurons tested. hrIL-1 beta-evoked responses were not altered by hexamethonium (100 microM), atropine (0.5 microM), yohimbine (0.3 microM), or naloxone (1 microM), indicating that cholinergic, alpha 2-adrenergic, or opioid receptors were not involved. Drugs that inhibit Na+, Ca2+, or K+ channels did not change hrIL-1 beta-evoked responses. Stimulation of synaptic inputs to pelvic ganglion neurons evoked nicotinic cholinergic fast excitatory postsynaptic potentials (fEPSPs). hrIL-1 beta inhibited fEPSPs in 44% of neurons tested but had no effect on acetylcholine-induced depolarizations. An IL-1 beta receptor antagonist blocked all actions of hrIL-1 beta. In summary, hrIL-1 beta has excitatory and inhibitory actions on pelvic ganglion neurons. Inhibition of fEPSPs by hrIL-1 beta may be due to presynaptic inhibition of acetylcholine release.


Meat Science ◽  
2015 ◽  
Vol 105 ◽  
pp. 108-113 ◽  
Author(s):  
N.N. Elroy ◽  
J. Rogers ◽  
G.G. Mafi ◽  
D.L. VanOverbeke ◽  
S.D. Hartson ◽  
...  

2021 ◽  
Author(s):  
Erva Bayraktar ◽  
Yuanyuan Liu ◽  
Ulrike B.S. Hedrich ◽  
Yildirim Sara ◽  
Holger Lerche ◽  
...  

Background and Purpose: Among genetic epilepsies, variants in sodium channel coding genes constitute a major subgroup. Variants in SCN8A, the coding gene for NaV1.6 channels, are characterized by a variety of symptoms including intractable epileptic seizures, psychomotor delay, progressive cognitive decline, and others such as autistic features, ataxia or dystonia. Standard anticonvulsant treatment has only limited impact on the course of disease. Experimental Approach: Personalized therapeutic regimens tailored to disease-causing pathophysiological mechanisms may offer the specificity required to overcome intractability. Toward this aim, we investigated in vitro in neuroblastoma cells the effects of S-Licarbazepine, a third-generation dibenzazepine and enhancer of slow inactivation of voltage gated sodium channels, on three gain-of-function NaV1.6 variants linked to representative phenotypes of mild epilepsy (G1475R), developmental and epileptic encephalopathy (M1760I) and intellectual disability without epilepsy (A1622D). Key Results: S-Licarbazepine strongly enhances the slow and — less pronounced — the fast inactivation of NaV1.6 wildtype channels. It acts similarly on all tested variants and irrespective of their particular biophysical dysfunction mechanism. Beyond that S–Licarbazepine has variant-specific effects including a partial reversal of pathologically slowed fast inactivation dynamics (A1622D, M1760I) and a trend to reduce the enhanced persistent Na+ current by A1622D variant channels. Conclusion and Implications: These data bring out that S-Licarbazepine not only owns substance-specific effects, but also holds variant-specific effects, which can variably contribute to functional compensation of distinct channel-specific biophysical properties and thereby highlighting the role of personalized approaches, which likely will be key to improved and successful treatment not only of SCN8A-related disease.


1995 ◽  
Vol 15 (6) ◽  
pp. 1141-1145 ◽  
Author(s):  
Paolo Calabresi ◽  
Antonio Pisani ◽  
Nicola B. Mercuri ◽  
Giorgio Bernardi

We have studied the effects of hypoxia on the membrane properties of striatal neurons intracellularly recorded from a corticostriatal slice preparation. Brief (2–10 min) periods of hypoxia produced reversible membrane depolarizations. Longer periods of hypoxia (12–20 min) produced irreversible membrane depolarizations. In voltage-clamp experiments, hypoxia caused an inward current coupled with an increased membrane conductance. Tetrodotoxin or low calcium (Ca2+)-high magnesium-containing solutions blocked synaptic transmission, but they did not reduce the hypoxia-induced electrical changes. Antagonists of excitatory amino acid (EAA) receptors failed to affect the electrical effects caused by oxygen (O2) deprivation. In low sodium (Na+)-containing solutions the hypoxia-induced inward current was largely reduced. Blockade of ATP-dependent Na+-potassium (K+) pump by ouabain enhanced hypoxia-induced membrane depolarizations and/or inward currents. Our findings indicate that, at least for in vitro experiments, the release of EAAs is not required for the acute hypoxia-induced electrical changes in striatal neurons.


Sign in / Sign up

Export Citation Format

Share Document