Renewable Energy Technologies in Africa: Retrospect & Prospects

1996 ◽  
Vol 16 (1-2) ◽  
pp. 35-40
Author(s):  
Judi Wangalwa Wakhungu

Africa's renewable energy resource base is large. Traditional patterns of energy use have resulted in widespread environmental degradation. Renewable energy technologies are capable of harnessing this energy on a sustainable basis. However, despite some notable successes, efforts to disseminate these tech nologies have resulted in numerous failures. The failure of such efforts has been attributed to a variety of problems which have yet to be evaluated in a comprehensive and policy-relevant form. Such analysis is prerequisite to enabling policy-makers to act effectively.

2015 ◽  
Vol 5 (2) ◽  
pp. 7-12
Author(s):  
I. L. Cîrstolovean

Abstract The goals of this paper are: to estimate the carbon emission reduction on energy efficiency measurements in a laboratory building in Transilvania University from Braşov, Romania, in accordance with the European Directive 2009/28/EC and to estimate the contribution of renewable energy to energy efficiency of the building using the performance indicator named Renewable Energy Ratio - RER. We will detail the methods of calculation for CO2 emissions and we will present the results for gas condensing boiler, and ground source heat pump for the laboratory building. The results show that conventional energy efficiency technologies and renewable energy technologies can be used to decrease CO2 emissions in buildings by 20–30% on average and up to over 40% for some building types and locations. The contribution of renewable energy is between 40 and 50 % from total energy use and only for heating is 58%. This value could rise to 0.63 if we apply to electricity produced by photovoltaic panels.


2019 ◽  
Vol 27 (4) ◽  
pp. 435-446
Author(s):  
Obadia Kyetuza Bishoge ◽  
Xinmei Huang ◽  
Lingling Zhang ◽  
Hongzhi Ma ◽  
Charity Danyo

Currently, there are an estimated 1.3 billion tonnes of municipal solid waste (MSW) generated per year globally, and this quantity is predicted to increase to 2.2 billion tonnes annually by 2025. If not well treated, this rapid growth of waste products can lead to socio-economic and environmental problems. Waste is potentially a misplaced valuable resource that can be converted and utilized in different ways such as renewable energy resources for the realization of sustainable development. Presently, waste-to-energy technologies (WtETs) are considered to be an encouraging advanced technology that is applied to convert MSW into a renewable energy resource (methane, biogas, biofuels or biodiesel, ethanol, syngas, or alcohol). WtETs can be biochemical (fermentation, anaerobic digestion, landfill with gas capture, and microbial fuel cell), thermochemical (incineration, thermal gasification, and pyrolysis), or chemical (esterification). This review mainly aims to provide an overview of the applications of these technologies by focusing on anaerobic digestion as biological (nonthermal) treatment technologies, and incineration, pyrolysis, and gasification processes as thermal treatment processes. Landfill gas utilization technologies, biological hydrogen production processes, and microbial fuel cells also are assessed. In addition, the contemporary risks and challenges of WtETs are reviewed.


2021 ◽  
Vol 13 (5) ◽  
pp. 2823
Author(s):  
Riaz Uddin ◽  
Hashim Raza Khan ◽  
Asad Arfeen ◽  
Muhammad Ayaz Shirazi ◽  
Athar Rashid ◽  
...  

Forecasting the microeconomics of electricity will turn into a challenging process when electricity is produced through renewable energy technologies (RET). These technologies are mainly sunlight-based photovoltaic (PV), wind power, and tidal resources, which vigorously rely upon ecological conditions. For a reliable and livable energy supply to the electricity grid from renewable means, electrical energy storage technologies can play an important role while considering the weather effects in order to provide immaculate, safe, and continuous energy throughout the generation period. Energy storage technologies (ESTs) charge themselves during the low power demand period and discharge when the demand of electricity increases in such a way that they act as a catalyst to provide energy boost to the power grid. In this paper, we presented and discussed the renewable ESTs for each type with respect to their operational mechanism. In this regard, the renewable energy scenarios of Pakistan and Turkey are first discussed in detail by analyzing the actual potential of each renewable energy resource in both the countries. Then, policy for the EST utilization for both the countries is recommended in order to secure sustainable and reliable energy provision.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 16
Author(s):  
Andrea Frazzica ◽  
Régis Decorme ◽  
Marco Calderoni ◽  
Alessandra Cuneo ◽  
Zuzana Taťáková ◽  
...  

This workshop brought together a selection of H2020 EU-funded projects involving experts from the biomass, geothermal, solar thermal, and heat pump sectors to discuss a common strategy for increasing the use of renewable energy technologies for heating and cooling for buildings and industry.


Sign in / Sign up

Export Citation Format

Share Document