scholarly journals Deleting IGF-1 receptor from forebrain neurons confers neuroprotection during stroke and upregulates endocrine somatotropin

2016 ◽  
Vol 37 (2) ◽  
pp. 396-412 ◽  
Author(s):  
C Daniel De Magalhaes Filho ◽  
Laurent Kappeler ◽  
Joëlle Dupont ◽  
Julien Solinc ◽  
Sonia Villapol ◽  
...  

Insulin-like growth factors control numerous processes, namely somatic growth, metabolism and stress resistance, connecting this pathway to aging and age-related diseases. Insulin-like growth factor signaling also impacts on neurogenesis, neuronal survival and structural plasticity. Recent reports demonstrated that diminished insulin-like growth factor signaling confers increased stress resistance in brain and other tissues. To better understand the role of neuronal insulin-like growth factor signaling in neuroprotection, we inactivated insulin-like growth factor type-1-receptor in forebrain neurons using conditional Cre-LoxP-mediated gene targeting. We found that brain structure and function, including memory performance, were preserved in insulin-like growth factor receptor mutants, and that certain characteristics improved, notably synaptic transmission in hippocampal neurons. To reveal stress-related roles of insulin-like growth factor signaling, we challenged the brain using a stroke-like insult. Importantly, when charged with hypoxia-ischemia, mutant brains were broadly protected from cell damage, neuroinflammation and cerebral edema. We also found that in mice with insulin-like growth factor receptor knockout specifically in forebrain neurons, a substantial systemic upregulation of growth hormone and insulin-like growth factor-I occurred, which was associated with significant somatic overgrowth. Collectively, we found strong evidence that blocking neuronal insulin-like growth factor signaling increases peripheral somatotropic tone and simultaneously protects the brain against hypoxic–ischemic injury, findings that may contribute to developing new therapeutic concepts preventing the disabling consequences of stroke.

2020 ◽  
Vol 9 (7) ◽  
pp. 2242
Author(s):  
Ye Liu ◽  
Kousuke Noda ◽  
Miyuki Murata ◽  
Di Wu ◽  
Atsuhiro Kanda ◽  
...  

Neovascular age related macular degeneration (nAMD) leads to severe vision loss worldwide and is characterized by the formation of choroidal neovascularization (CNV) and fibrosis. In the current study, we aimed to investigate the effect of blockade for platelet derived growth factor receptor-β (PDGFR-β) on the formation of choroidal neovascularization and fibrosis in the laser-induced CNV model in mice. Firstly, the presence of PDGFR-β in CNV lesions were confirmed. Intravitreal injection of PDGFR-β neutralizing antibody significantly reduced the size of CNV and subretinal fibrosis. Additionally, subretinal hyperreflective material (SHRM), a landmark feature on OCT as a risk factor for subretinal fibrosis formation in nAMD patients was also suppressed by PDGFR-β blockade. Furthermore, pericytes were abundantly recruited to the CNV lesions during CNV formation, however, blockade of PDGFR-β significantly reduced pericyte recruitment. In addition, PDGF-BB stimulation increased the migration of the rat retinal pericyte cell line, R-rPCT1, which was abrogated by the neutralization of PDGFR-β. These results indicate that blockade of PDGFR-β attenuates laser-induced CNV and fibrosis through the inhibition of pericyte migration.


2002 ◽  
Vol 330 (1) ◽  
pp. 65-68 ◽  
Author(s):  
Yoon Hee Chung ◽  
Chung Min Shin ◽  
Kyeung Min Joo ◽  
Myeung Ju Kim ◽  
Choong Ik Cha

Sign in / Sign up

Export Citation Format

Share Document