scholarly journals VLA-4 mediated adhesion of melanoma cells on the blood–brain barrier is the critical cue for melanoma cell intercalation and barrier disruption

2018 ◽  
Vol 39 (10) ◽  
pp. 1995-2010 ◽  
Author(s):  
Ana B García-Martín ◽  
Pascale Zwicky ◽  
Thomas Gruber ◽  
Christoph Matti ◽  
Federica Moalli ◽  
...  

Melanoma is the most aggressive skin cancer in humans. One severe complication is the formation of brain metastasis, which requires extravasation of melanoma cells across the tight blood–brain barrier (BBB). Previously, VLA-4 has been assigned a role for the adhesive interaction of melanoma cells with non-BBB endothelial cells. However, the role of melanoma VLA-4 for breaching the BBB remained unknown. In this study, we used a mouse in vitro BBB model and imaged the shear resistant arrest of melanoma cells on the BBB. Similar to effector T cells, inflammatory conditions of the BBB increased the arrest of melanoma cells followed by a unique post-arrest behavior lacking immediate crawling. However, over time, melanoma cells intercalated into the BBB and compromised its barrier properties. Most importantly, antibody ablation of VLA-4 abrogated melanoma shear resistant arrest on and intercalation into the BBB and protected the BBB from barrier breakdown. A tissue microarray established from human brain metastasis revealed that indeed a majority of 92% of all human melanoma brain metastases stained VLA-4 positive. We propose VLA-4 as a target for the inhibition of brain metastasis formation in the context of personalized medicine identifying metastasizing VLA-4 positive melanoma.

2003 ◽  
Vol 31 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Hanna Tähti ◽  
Heidi Nevala ◽  
Tarja Toimela

The purpose of this paper is to review the current state of development of advanced in vitro blood–brain barrier (BBB) models. The BBB is a special capillary bed that separates the blood from the central nervous system (CNS) parenchyma. Astrocytes maintain the integrity of the BBB, and, without astrocytic contacts, isolated brain capillary endothelial cells in culture lose their barrier characteristics. Therefore, when developing in vitro BBB models, it is important to add astrocytic factors into the culture system. Recently, novel filter techniques and co-culture methods have made it possible to develop models which resemble the in vivo functions of the BBB in an effective way. With a BBB model, kinetic factors can be added into the in vitro batteries used for evaluating the neurotoxic potential of chemicals. The in vitro BBB model also represents a useful tool for the in vitro prediction of the BBB permeability of drugs, and offers the possibility to scan a large number of drugs for their potential to enter the CNS. Cultured monolayers of brain endothelial cell lines or selected epithelial cell lines, combined with astrocyte and neuron cultures, form a novel three-dimensional technique for the screening of neurotoxic compounds.


2015 ◽  
Vol 16 (12) ◽  
pp. 29454-29466 ◽  
Author(s):  
Michael Schuhmann ◽  
Stefan Bittner ◽  
Sven Meuth ◽  
Christoph Kleinschnitz ◽  
Felix Fluri

2008 ◽  
Vol 14 (6) ◽  
pp. 843-852 ◽  
Author(s):  
J Kraus ◽  
K Voigt ◽  
AM Schuller ◽  
M Scholz ◽  
KS Kim ◽  
...  

Background Blood–brain barrier (BBB) breakdown is an early event in the pathogenesis of multiple sclerosis (MS). In a previous study we have found a direct stabilization of barrier characteristics after treatment of bovine brain capillary endothelial cells (BCECs) with human recombinant interferon-β-1a (IFN-β-1a) in an in vitro BBB model. In the present study we examined the effect of human recombinant IFN-β-1a on the barrier properties of BCECs derived from four different species including humans to predict treatment efficacy of IFN-β-1a in MS patients. Methods We used primary bovine and porcine BCECs, as well as human and murine BCEC cell lines. We investigated the influence of human recombinant IFN-β-1a on the paracellular permeability for 3H-inulin and 14C-sucrose across monolayers of bovine, human, and murine BCECs. In addition, the transendothelial electrical resistance (TEER) was determined in in vitro systems applying porcine and murine BCECS. Results We found a stabilizing effect on the barrier characteristics of BCECs after pretreatment with IFN-β-1a in all applied in vitro models: addition of IFN-β-1a resulted in a significant decrease of the paracellular permeability across monolayers of human, bovine, and murine BCECs. Furthermore, the TEER was significantly increased after pretreatment of porcine and murine BCECs with IFN-β-1a. Conclusion Our data suggest that BBB stabilization by IFN-β-1a may contribute to its beneficial effects in the treatment of MS. A human in vitro BBB model might be useful as bioassay for testing the treatment efficacy of drugs in MS.


2016 ◽  
Vol 37 (8) ◽  
pp. 2894-2909 ◽  
Author(s):  
Ruth Lyck ◽  
Marc-André Lécuyer ◽  
Michael Abadier ◽  
Christof B Wyss ◽  
Christoph Matti ◽  
...  

Activated leukocyte cell adhesion molecule (ALCAM) has been proposed to mediate leukocyte migration across the blood–brain barrier (BBB) in multiple sclerosis or experimental autoimmune encephalomyelitis (EAE). Here, we confirmed vascular ALCAM expression in human brain tissue samples in situ and on two different human in vitro BBB models. Antibody-mediated inhibition of ALCAM reduced diapedesis of human CD4+ Th1 but not of Th17 cells across the human BBB in vitro. In accordance to human Th1 cells, mouse Th1 cells showed reduced diapedesis across an ALCAM−/− in vitro BBB model under static but no longer under flow conditions. In contrast to the limited role of ALCAM in T cell extravasation across the BBB, we found a contribution of ALCAM to rolling, adhesion, and diapedesis of human CD14+ monocytes across the human BBB under flow and static conditions. Taken together, our study highlights the potential differences in the CNS expression of ALCAM in mouse and human and supports a prominent role for ALCAM in the multi-step extravasation of monocytes across the BBB.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Shyanne Page ◽  
Ronak Patel ◽  
Abraham Alahmad

The blood-brain barrier (BBB) constitutes a component of the neurovascular unit formed by specialized brain microvascular endothelial cells (BMECs) surrounded by astrocytes, pericytes and neurons. During ischemic stroke injury, the BBB constitutes the first responding element resulting in the opening of the BBB and eventually neural cell death by excitotoxicity. A better understanding of the cellular mechanisms underlying the opening of the BBB during ischemic stroke is essential to identify targets to restore such barrier function after injury. Current in vitro models of the human BBB, based on primary or immortalized BMECs monocultures, display poor barrier properties but also lack one or two cellular components of the neurovascular unit.In this study, we designed an integrative in vitro model of the BBB by generating BMECs, astrocytes and neurons using patient-derived BMECs from two iPSC lines (IMR90-c4 and CTR66M). We were able to obtain all three cell types from these two cell lines. iPSC-derived BMECs showed barrier properties similar or better barrier function than hCMEC/D3 monolayer (an immortalized adult somatic BMEC). Furthermore, iPSC—derived astrocytes were capable to induce barrier properties in BMECs upon co-cultures. whereas iPSC-derived neurons were capable to form extensive and branched neurites. Upon OGD stress, iPSC-derived BMECs showed a disruption of their barrier function as early as 6 hours of OGD stress and showed a complete disruption by 24 hours. Such disruption was reversed by reoxygenation. Interestingly such barrier disruption occurs through a VEGF-independent mechanism. In the other hand, iPSC-derived neurons showed a significant decrease in cell metabolic activity preceding neurites pruning. Finally, astrocytes showed the most robust phenotype, as we noted no cell death by 24 hours OGD.In this study, we demonstrated the ability to differentiate three cell types from the same patient in two iPSC lines. We also demonstrated the ability of these cells to respond to OGD/reoxygenation stress in agreement with the current literature. We are currently investigating the molecular mechanisms by which OGD/reoxygenation drive the cellular response in these cell types.


2018 ◽  
Vol 39 (3) ◽  
pp. 395-410 ◽  
Author(s):  
Adrien Mossu ◽  
Maria Rosito ◽  
Tejas Khire ◽  
Hung Li Chung ◽  
Hideaki Nishihara ◽  
...  

Here we report on the development of a breakthrough microfluidic human in vitro cerebrovascular barrier (CVB) model featuring stem cell-derived brain-like endothelial cells (BLECs) and nanoporous silicon nitride (NPN) membranes (µSiM-CVB). The nanoscale thinness of NPN membranes combined with their high permeability and optical transparency makes them an ideal scaffold for the assembly of an in vitro microfluidic model of the blood–brain barrier (BBB) featuring cellular elements of the neurovascular unit (NVU). Dual-chamber devices divided by NPN membranes yield tight barrier properties in BLECs and allow an abluminal pericyte-co-culture to be replaced with pericyte-conditioned media. With the benefit of physiological flow and superior imaging quality, the µSiM-CVB platform captures each phase of the multi-step T-cell migration across the BBB in live cell imaging. The small volume of <100 µL of the µSiM-CVB will enable in vitro investigations of rare patient-derived immune cells with the human BBB. The µSiM-CVB is a breakthrough in vitro human BBB model to enable live and high-quality imaging of human immune cell interactions with the BBB under physiological flow. We expect it to become a valuable new tool for the study of cerebrovascular pathologies ranging from neuroinflammation to metastatic cancer.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e55166 ◽  
Author(s):  
Fuyuko Takata ◽  
Shinya Dohgu ◽  
Atsushi Yamauchi ◽  
Junichi Matsumoto ◽  
Takashi Machida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document