Interferon-β stabilizes barrier characteristics of the blood–brain barrier in four different species in vitro

2008 ◽  
Vol 14 (6) ◽  
pp. 843-852 ◽  
Author(s):  
J Kraus ◽  
K Voigt ◽  
AM Schuller ◽  
M Scholz ◽  
KS Kim ◽  
...  

Background Blood–brain barrier (BBB) breakdown is an early event in the pathogenesis of multiple sclerosis (MS). In a previous study we have found a direct stabilization of barrier characteristics after treatment of bovine brain capillary endothelial cells (BCECs) with human recombinant interferon-β-1a (IFN-β-1a) in an in vitro BBB model. In the present study we examined the effect of human recombinant IFN-β-1a on the barrier properties of BCECs derived from four different species including humans to predict treatment efficacy of IFN-β-1a in MS patients. Methods We used primary bovine and porcine BCECs, as well as human and murine BCEC cell lines. We investigated the influence of human recombinant IFN-β-1a on the paracellular permeability for 3H-inulin and 14C-sucrose across monolayers of bovine, human, and murine BCECs. In addition, the transendothelial electrical resistance (TEER) was determined in in vitro systems applying porcine and murine BCECS. Results We found a stabilizing effect on the barrier characteristics of BCECs after pretreatment with IFN-β-1a in all applied in vitro models: addition of IFN-β-1a resulted in a significant decrease of the paracellular permeability across monolayers of human, bovine, and murine BCECs. Furthermore, the TEER was significantly increased after pretreatment of porcine and murine BCECs with IFN-β-1a. Conclusion Our data suggest that BBB stabilization by IFN-β-1a may contribute to its beneficial effects in the treatment of MS. A human in vitro BBB model might be useful as bioassay for testing the treatment efficacy of drugs in MS.

2011 ◽  
Vol 18 (2) ◽  
pp. 236-239 ◽  
Author(s):  
Marcus Müller ◽  
Achim Frese ◽  
Isabelle Nassenstein ◽  
Maike Hoppen ◽  
Martin Marziniak ◽  
...  

Interferon-β (IFN-β) stabilizes the blood–brain barrier (BBB) in vitro. Here we investigated the effect of serum from 15 IFN-β-1b-treated multiple sclerosis (MS) patients on the permeability read-outs of small solutes in an in vitro BBB model consisting of human brain microvascular endothelial cells in co-culture with rat astrocytes. The addition of sera from IFN-β-treated patients resulted in a significantly ( p < 0.05) reduced permeability as compared with untreated patients. Our findings show that sera from IFN-β-1b-treated MS patients have a stabilizing effect on the in vitro BBB. We suggest an unknown potentially pro-inflammatory factor in the serum of MS patients that may lead to a BBB dysfunction and can be modulated by IFN-β.


2005 ◽  
Vol 289 (5) ◽  
pp. H2012-H2019 ◽  
Author(s):  
Melissa A. Fleegal ◽  
Sharon Hom ◽  
Lindsay K. Borg ◽  
Thomas P. Davis

The blood-brain barrier (BBB) is a metabolic and physiological barrier important for maintaining brain homeostasis. The aim of this study was to determine the role of PKC activation in BBB paracellular permeability changes induced by hypoxia and posthypoxic reoxygenation using in vitro and in vivo BBB models. In rat brain microvessel endothelial cells (RMECs) exposed to hypoxia (1% O2-99% N2; 24 h), a significant increase in total PKC activity was observed, and this was reduced by posthypoxic reoxygenation (95% room air-5% CO2) for 2 h. The expression of PKC-βII, PKC-γ, PKC-η, PKC-μ, and PKC-λ also increased following hypoxia (1% O2-99% N2; 24 h), and these protein levels remained elevated following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Increases in the expression of PKC-ε and PKC-ζ were also observed following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Moreover, inhibition of PKC with chelerythrine chloride (10 μM) attenuated the hypoxia-induced increases in [14C]sucrose permeability. Similar to what was observed in RMECs, total PKC activity was also stimulated in cerebral microvessels isolated from rats exposed to hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min). In contrast, hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min) significantly increased the expression levels of only PKC-γ and PKC-θ in the in vivo hypoxia model. These data demonstrate that hypoxia-induced BBB paracellular permeability changes occur via a PKC-dependent mechanism, possibly by differentially regulating the protein expression of the 11 PKC isozymes.


2003 ◽  
Vol 31 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Hanna Tähti ◽  
Heidi Nevala ◽  
Tarja Toimela

The purpose of this paper is to review the current state of development of advanced in vitro blood–brain barrier (BBB) models. The BBB is a special capillary bed that separates the blood from the central nervous system (CNS) parenchyma. Astrocytes maintain the integrity of the BBB, and, without astrocytic contacts, isolated brain capillary endothelial cells in culture lose their barrier characteristics. Therefore, when developing in vitro BBB models, it is important to add astrocytic factors into the culture system. Recently, novel filter techniques and co-culture methods have made it possible to develop models which resemble the in vivo functions of the BBB in an effective way. With a BBB model, kinetic factors can be added into the in vitro batteries used for evaluating the neurotoxic potential of chemicals. The in vitro BBB model also represents a useful tool for the in vitro prediction of the BBB permeability of drugs, and offers the possibility to scan a large number of drugs for their potential to enter the CNS. Cultured monolayers of brain endothelial cell lines or selected epithelial cell lines, combined with astrocyte and neuron cultures, form a novel three-dimensional technique for the screening of neurotoxic compounds.


2018 ◽  
Vol 39 (10) ◽  
pp. 1995-2010 ◽  
Author(s):  
Ana B García-Martín ◽  
Pascale Zwicky ◽  
Thomas Gruber ◽  
Christoph Matti ◽  
Federica Moalli ◽  
...  

Melanoma is the most aggressive skin cancer in humans. One severe complication is the formation of brain metastasis, which requires extravasation of melanoma cells across the tight blood–brain barrier (BBB). Previously, VLA-4 has been assigned a role for the adhesive interaction of melanoma cells with non-BBB endothelial cells. However, the role of melanoma VLA-4 for breaching the BBB remained unknown. In this study, we used a mouse in vitro BBB model and imaged the shear resistant arrest of melanoma cells on the BBB. Similar to effector T cells, inflammatory conditions of the BBB increased the arrest of melanoma cells followed by a unique post-arrest behavior lacking immediate crawling. However, over time, melanoma cells intercalated into the BBB and compromised its barrier properties. Most importantly, antibody ablation of VLA-4 abrogated melanoma shear resistant arrest on and intercalation into the BBB and protected the BBB from barrier breakdown. A tissue microarray established from human brain metastasis revealed that indeed a majority of 92% of all human melanoma brain metastases stained VLA-4 positive. We propose VLA-4 as a target for the inhibition of brain metastasis formation in the context of personalized medicine identifying metastasizing VLA-4 positive melanoma.


2016 ◽  
Vol 37 (8) ◽  
pp. 2894-2909 ◽  
Author(s):  
Ruth Lyck ◽  
Marc-André Lécuyer ◽  
Michael Abadier ◽  
Christof B Wyss ◽  
Christoph Matti ◽  
...  

Activated leukocyte cell adhesion molecule (ALCAM) has been proposed to mediate leukocyte migration across the blood–brain barrier (BBB) in multiple sclerosis or experimental autoimmune encephalomyelitis (EAE). Here, we confirmed vascular ALCAM expression in human brain tissue samples in situ and on two different human in vitro BBB models. Antibody-mediated inhibition of ALCAM reduced diapedesis of human CD4+ Th1 but not of Th17 cells across the human BBB in vitro. In accordance to human Th1 cells, mouse Th1 cells showed reduced diapedesis across an ALCAM−/− in vitro BBB model under static but no longer under flow conditions. In contrast to the limited role of ALCAM in T cell extravasation across the BBB, we found a contribution of ALCAM to rolling, adhesion, and diapedesis of human CD14+ monocytes across the human BBB under flow and static conditions. Taken together, our study highlights the potential differences in the CNS expression of ALCAM in mouse and human and supports a prominent role for ALCAM in the multi-step extravasation of monocytes across the BBB.


2012 ◽  
Vol 32 (4) ◽  
pp. 628-632 ◽  
Author(s):  
Thorsten Pflanzner ◽  
Benjamin Petsch ◽  
Bettina André-Dohmen ◽  
Andreas Müller-Schiffmann ◽  
Sabrina Tschickardt ◽  
...  

The blood—brain barrier (BBB) facilitates amyloid-β (Aβ) exchange between the blood and the brain. Here, we found that the cellular prion protein (PrPc), a putative receptor implicated in mediating Aβ neurotoxicity in Alzheimer's disease (AD), participates in Aβ transcytosis across the BBB. Using an in vitro BBB model, [125I]-Aβ1–40 transcytosis was reduced by genetic knockout of PrPc or after addition of a competing PrPc-specific antibody. Furthermore, we provide evidence that PrPc is expressed in endothelial cells and, that monomeric Aβ1–40 binds to PrPc. These observations provide new mechanistic insights into the role of PrPc in AD.


2021 ◽  
Vol 118 (28) ◽  
pp. e2105245118
Author(s):  
Zhiling Guo ◽  
Peng Zhang ◽  
Swaroop Chakraborty ◽  
Andrew J Chetwynd ◽  
Fazel Abdolahpur Monikh ◽  
...  

Understanding the potential of nanomaterials (NMs) to cross the blood–brain barrier (BBB), as a function of their physicochemical properties and subsequent behavior, fate, and adverse effect beyond that point, is vital for evaluating the neurological effects arising from their unintentional entry into the brain, which is yet to be fully explored. This is not only due to the complex nature of the brain but also the existing analytical limitations for characterization and quantification of NMs in the complex brain environment. By using a fit-for-purpose analytical workflow and an in vitro BBB model, we show that the physiochemical properties of metallic NMs influence their biotransformation in biological matrices, which in turn modulates the transport form, efficiency, amounts, and pathways of NMs through the BBB and, consequently, their neurotoxicity. The data presented here will support in silico modeling and prediction of the neurotoxicity of NMs and facilitate the tailored design of safe NMs.


2017 ◽  
Vol 42 (4) ◽  
pp. 1592-1602 ◽  
Author(s):  
Morgane Chatard ◽  
Clémentine Puech ◽  
Nathalie Perek ◽  
Frédéric Roche

Background/Aims: Understanding cellular mechanisms induced by hypoxia is fundamental to reduce blood-brain barrier (BBB) disruption. Nevertheless, the investigation of hypoxia on cellular pathways is complex with true hypoxia because HIF-1α has a short lifetime and rapidly reverts back to a normoxic state. To overcome this difficulty, mimetic agents of the hypoxia pathway have been developed, including the gold standard CoCl2. In this study, we proposed to compare CoCl2 and hydralazine in order to determine a suitable mimetic agent of hypoxia for the study on the BBB. Methods: We studied the cytotoxicity and the impact of these molecules on the integrity of an in vitro BBB model by comparing them to hypoxia controls. Results: We showed that the impact of hypoxic stress in our in vitro BBB model is rather similar between hydralazine and CoCl2. Chemical hypoxic stress led to an increase of BBB permeability either with CoCl2 or hydralazine. Tight junction protein expressions showed that this chemical hypoxic stress decreased ZO-1 but not occluding expressions, and cells had set up a defence mechanism by increasing expression and activity of their efflux transporters. Conclusion: Our results demonstrated that hydralazine is a better mimetic agent and more suitable than CoCl2 because it had the same effect but without the cytotoxic effect on in vitro BBB cells.


Sign in / Sign up

Export Citation Format

Share Document