scholarly journals What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review

2019 ◽  
Vol 40 (5) ◽  
pp. 1021-1039 ◽  
Author(s):  
Khalid M Saqr ◽  
Sherif Rashad ◽  
Simon Tupin ◽  
Kuniyasu Niizuma ◽  
Tamer Hassan ◽  
...  

Despite the plethora of published studies on intracranial aneurysms (IAs) hemodynamic using computational fluid dynamics (CFD), limited progress has been made towards understanding the complex physics and biology underlying IA pathophysiology. Guided by 1733 published papers, we review and discuss the contemporary IA hemodynamics paradigm established through two decades of IA CFD simulations. We have traced the historical origins of simplified CFD models which impede the progress of comprehending IA pathology. We also delve into the debate concerning the Newtonian fluid assumption used to represent blood flow computationally. We evidently demonstrate that the Newtonian assumption, used in almost 90% of studies, might be insufficient to describe IA hemodynamics. In addition, some fundamental properties of the Navier–Stokes equation are revisited in supplementary material to highlight some widely spread misconceptions regarding wall shear stress (WSS) and its derivatives. Conclusively, our study draws a roadmap for next-generation IA CFD models to help researchers investigate the pathophysiology of IAs.

Author(s):  
Ian Torotwa ◽  
Changying Ji

In this study, turbulent flow fields in a baffled vessel stirred by counter-axial flow impeller have been investigated in comparison to the Rushton turbine. The resultant turbulence was numerically predicted using computational fluid dynamics (CFD). Turbulence models were developed in ANSYS Fluent 18.1 solver using the Navier-Stokes equation with the standard k-ε turbulence model. The Multiple Reference Frame (MRF) approach was used to simulate the impeller action in the vertical and horizontal planes of the stirred fluid volume. Velocity profiles generated from the simulations were used to predict and compare the performance of the two designs. To validate the CFD model, the simulation results were compared with experimental results from existing work and a satisfactory agreement was established. It was concluded that the counter-axial flow impeller could provide better turbulence characteristics that would improve the quality of mixing systems.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jeff R. Harris ◽  
Blake W. Lance ◽  
Barton L. Smith

A computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate is presented. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). All important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 <  Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.


2012 ◽  
Vol 184-185 ◽  
pp. 944-948 ◽  
Author(s):  
Hai Jun Gong ◽  
Yang Liu ◽  
Xue Yi Fan ◽  
Da Ming Xu

For a clear and comprehensive opinion on segregated SIMPLE algorithm in the area of computational fluid dynamics (CFD) during liquid processing of materials, the most significant developments on the SIMPLE algorithm and its variants are briefly reviewed. Subsequently, some important advances during last 30 years serving as increasing numerical accuracy, enhancing robustness and improving efficiency for Navier–Stokes (N-S) equations of incompressible fluid flow are summarized. And then a so-called Direct-SIMPLE scheme proposed by the authors of present paper introduced, which is different from SIMPLE-like schemes, no iterative computations are needed to achieve the final pressure and velocity corrections. Based on the facts cited in present paper, it conclude that the SIMPLE algorithm and its variants will continue to evolve aimed at convergence and accuracy of solution by improving and combining various methods with different grid techniques, and all the algorithms mentioned above will enjoy widespread use in the future.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Pang Jung Hoe ◽  
Nik Ahmad Ridhwan Nik Mohd

The need for high performance and green aircraft has brought the blended wing (BWB) aircraft concept to the centre of interest for many researchers. BWB is a type of aircraft characterized by a complex blending geometry between fuselage and wing. Recently, many researches had been performed to unlock its aerodynamic complexity that is still not well understood. In this paper, aerodynamic characteristic of a baseline BWB configuration derived from simple conventional aircraft configuration was analysed using the Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD) solver. The main objectives of this work are to predict the aerodynamic characteristics of the BWB concept at steady flight conditions and at various pitch angles. The results obtained are then compared against a simple conventional aircraft configuration (CAC). The results show that the BWB configuration used has 24% higher L/D ratio than the CAC. The increment to the L/D however is mainly due to lower drag than the improvement in the lift. 


Author(s):  
Jian-Xun Wang ◽  
Christopher J. Roy ◽  
Heng Xiao

Proper quantification and propagation of uncertainties in computational simulations are of critical importance. This issue is especially challenging for computational fluid dynamics (CFD) applications. A particular obstacle for uncertainty quantifications in CFD problems is the large model discrepancies associated with the CFD models used for uncertainty propagation. Neglecting or improperly representing the model discrepancies leads to inaccurate and distorted uncertainty distribution for the quantities of interest (QoI). High-fidelity models, being accurate yet expensive, can accommodate only a small ensemble of simulations and thus lead to large interpolation errors and/or sampling errors; low-fidelity models can propagate a large ensemble, but can introduce large modeling errors. In this work, we propose a multimodel strategy to account for the influences of model discrepancies in uncertainty propagation and to reduce their impact on the predictions. Specifically, we take advantage of CFD models of multiple fidelities to estimate the model discrepancies associated with the lower-fidelity model in the parameter space. A Gaussian process (GP) is adopted to construct the model discrepancy function, and a Bayesian approach is used to infer the discrepancies and corresponding uncertainties in the regions of the parameter space where the high-fidelity simulations are not performed. Several examples of relevance to CFD applications are performed to demonstrate the merits of the proposed strategy. Simulation results suggest that, by combining low- and high-fidelity models, the proposed approach produces better results than what either model can achieve individually.


2012 ◽  
Vol 57 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Jennifer N. Abras ◽  
C. Eric Lynch ◽  
Marilyn J. Smith

The focus of this paper is to discuss the unique challenges introduced through the use of unstructured grids in rotorcraft computational fluid dynamics (CFD)–computational structural dynamics (CSD) coupling. The use of unstructured grid methodology in CFD has been expanding because of the advantages in grid generation and modeling of complex configurations. However, the resulting amorphous distribution of the grid points on the rotor blade surface provides no information with regard to the orientation of the blade, in direct contrast to structured grid methodology that can take advantage of the ordered mapping of points to identify the orientation as well as simplifying airloads integration. A methodology has been developed and is described here, which now permits unstructured methods to be utilized for elastic rotary-wing simulations. This methodology is evaluated through comparison of the UH60A rotor with available flight test data for forward flight.


2015 ◽  
Vol 73 (5) ◽  
pp. 969-982 ◽  
Author(s):  
Edward Wicklein ◽  
Damien J. Batstone ◽  
Joel Ducoste ◽  
Julien Laurent ◽  
Alonso Griborio ◽  
...  

Computational fluid dynamics (CFD) modelling in the wastewater treatment (WWT) field is continuing to grow and be used to solve increasingly complex problems. However, the future of CFD models and their value to the wastewater field are a function of their proper application and knowledge of their limits. As has been established for other types of wastewater modelling (i.e. biokinetic models), it is timely to define a good modelling practice (GMP) for wastewater CFD applications. An International Water Association (IWA) working group has been formed to investigate a variety of issues and challenges related to CFD modelling in water and WWT. This paper summarizes the recommendations for GMP of the IWA working group on CFD. The paper provides an overview of GMP and, though it is written for the wastewater application, is based on general CFD procedures. A forthcoming companion paper to provide specific details on modelling of individual wastewater components forms the next step of the working group.


Author(s):  
Jason Smith ◽  
Robert N. Eli

This paper reports on a laboratory experiment conducted more than 30 years ago (Eli, 1974, unpublished), and recent Computational Fluid Dynamics (CFD) investigations, focusing on the properties of a plane tangential jet produced by an apparatus called a “centrifugal nozzle.” The authors believe that the centrifugal nozzle has potential industrial applications in several areas related to fluid mixing and particulate matter suspension in mixing tanks. It is also believed that this experiment, or one similar, may provide data useful for benchmarking CFD models.


Sign in / Sign up

Export Citation Format

Share Document