scholarly journals Regional hyperperfusion in older adults with objectively-defined subtle cognitive decline

2020 ◽  
pp. 0271678X2093517 ◽  
Author(s):  
Kelsey R Thomas ◽  
Jessica R Osuna ◽  
Alexandra J Weigand ◽  
Emily C Edmonds ◽  
Alexandra L Clark ◽  
...  

Although cerebral blood flow (CBF) alterations are associated with Alzheimer’s disease (AD), CBF patterns across prodromal stages of AD remain unclear. Therefore, we investigated patterns of regional CBF in 162 Alzheimer’s Disease Neuroimaging Initiative participants characterized as cognitively unimpaired (CU; n = 80), objectively-defined subtle cognitive decline (Obj-SCD; n = 31), or mild cognitive impairment (MCI; n = 51). Arterial spin labeling MRI quantified regional CBF in a priori regions of interest: hippocampus, inferior temporal gyrus, inferior parietal lobe, medial orbitofrontal cortex, and rostral middle frontal gyrus. Obj-SCD participants had increased hippocampal and inferior parietal CBF relative to CU and MCI participants and increased inferior temporal CBF relative to MCI participants. CU and MCI groups did not differ in hippocampal or inferior parietal CBF, but CU participants had increased inferior temporal CBF relative to MCI participants. There were no CBF group differences in the two frontal regions. Thus, we found an inverted-U pattern of CBF signal across prodromal AD stages in regions susceptible to early AD pathology. Hippocampal and inferior parietal hyperperfusion in Obj-SCD may reflect early neurovascular dysregulation, whereby higher CBF is needed to maintain cognitive functioning relative to MCI participants, yet is also reflective of early cognitive inefficiencies that distinguish Obj-SCD from CU participants.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yu Guo ◽  
◽  
Yu-Yuan Huang ◽  
Xue-Ning Shen ◽  
Shi-Dong Chen ◽  
...  

Abstract Background We aimed to investigate the tau biomarker discrepancies of Alzheimer’s disease (AD) using plasma tau phosphorylated at threonine 181 (p-tau181), cerebrospinal fluid (CSF) p-tau181, and AV1451 positron emission tomography (PET). Methods In the Alzheimer’s Disease Neuroimaging Initiative, 724 non-demented participants were categorized into plasma/CSF and plasma/PET groups. Demographic and clinical variables, amyloid-β (Aβ) burden, flortaucipir-PET binding in Braak regions of interest (ROIs), longitudinal changes in clinical outcomes, and conversion risk were compared. Results Across different tau biomarker groups, the proportion of participants with a discordant profile varied (plasma+/CSF− 15.6%, plasma−/CSF+ 15.3%, plasma+/PET− 22.4%, and plasma−/PET+ 6.1%). Within the plasma/CSF categories, we found an increase from concordant-negative to discordant to concordant-positive in the frequency of Aβ pathology or cognitive impairment, rates of cognitive decline, and risk of cognitive conversion. However, the two discordant categories (plasma+/CSF− and plasma−/CSF+) showed comparable performances, resulting in similarly reduced cognitive capacities. Regarding plasma/PET categories, as expected, PET-positive individuals had increased Aβ burden, elevated flortaucipir retention in Braak ROIs, and accelerated cognitive deterioration than concordant-negative persons. Noteworthy, discordant participants with normal PET exhibited reduced flortaucipir uptake in Braak stage ROIs and slower rates of cognitive decline, relative to those PET-positive. Therefore, individuals with PET abnormality appeared to have advanced tau pathological changes and poorer cognitive function, regardless of the plasma status. Furthermore, these results were found only in individuals with Aβ pathology. Conclusions Our results indicate that plasma and CSF p-tau181 abnormalities associated with amyloidosis occur simultaneously in the progression of AD pathogenesis and related cognitive decline, before tau-PET turns positive.


Author(s):  
J.R. Bock ◽  
J. Hara ◽  
D. Fortier ◽  
M.D. Lee ◽  
R.C. Petersen ◽  
...  

Background: Recent Alzheimer’s disease (AD) trials have faced significant challenges to enroll pre-symptomatic or early stage AD subjects with biomarker positivity, minimal or no cognitive impairment, and likelihood to decline cognitively during a short trial period. Our previous study showed that digital cognitive biomarkers (DCB), generated by a hierarchical Bayesian cognitive process (HBCP) model, were able to distinguish groups of cognitively normal individuals with impending cognitive decline from those without. We generated DCBs using only baseline Auditory Verbal Learning Test’s wordlist memory (WLM) item response data from the Mayo Clinic Alzheimer’s Disease Patient Registry. Objectives: To replicate our previous findings, using baseline ADAS-Cog WLM item response data from the Alzheimer’s Disease Neuroimaging Initiative, and compare DCBs to traditional approaches for scoring word-list memory tests. Design: Classified decliner subjects (n = 61) as those who developed amnestic MCI or AD dementia within 3 years of normal baseline assessment and non-decliner (n = 442) as those who did not. Measures: Evaluated the relative value of DCBs compared to traditional measures, using three analytic approaches to group differences: 1) logistic regression of summary scores per ADAS-Cog WLM task; 2) Bayesian modeling of summary scores; and 3) HBCP modeling to generate DCBs from item-level responses. Results: The HBCP model produced posterior distributions of group differences, of which Bayes factor assessment identified three DCBs with notable group differences: Immediate Retrieval from Durable Storage, (BFds = 11.8, strong evidence); One-Shot Learning, (BFds = 4.5, moderate evidence); and Partial Learning (BFds = 2.9, weak evidence). In contrast, logistic regression of summary scores did not significantly discriminate between groups, and the Bayes factor assessment of modeled summary scores provided moderate evidence that the groups were equivalent (BFsd = 3.4, 3.1, 2.9, and 1.4, respectively). Conclusions: This study demonstrated DCBs’ ability to distinguish , at baseline, between impending cognitive decline and non-decline groups where individuals in both groups were classified as cognitively normal. This validated findings from our previous study, demonstrating DCBs’ advantages over traditional approaches. This study warrants further refinement of the HBCP DCBs to predict impending cognitive decline in individuals and other factors associated with AD, such as physical biomarker load.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Friederike Thams ◽  
Anna Kuzmina ◽  
Malte Backhaus ◽  
Shu-Chen Li ◽  
Ulrike Grittner ◽  
...  

Abstract Background Given the growing older population worldwide, and the associated increase in age-related diseases, such as Alzheimer’s disease (AD), investigating non-invasive methods to ameliorate or even prevent cognitive decline in prodromal AD is highly relevant. Previous studies suggest transcranial direct current stimulation (tDCS) to be an effective method to boost cognitive performance, especially when applied in combination with cognitive training in healthy older adults. So far, no studies combining tDCS concurrent with an intense multi-session cognitive training in prodromal AD populations have been conducted. Methods The AD-Stim trial is a monocentric, randomized, double-blind, placebo-controlled study, including a 3-week tDCS-assisted cognitive training with anodal tDCS over left DLPFC (target intervention), compared to cognitive training plus sham (control intervention). The cognitive training encompasses a letter updating task and a three-stage Markov decision-making task. Forty-six participants with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) will be randomized block-wise to either target or control intervention group and participate in nine interventional visits with additional pre- and post-intervention assessments. Performance in the letter updating task after training and anodal tDCS compared to sham stimulation will be analyzed as primary outcome. Further, performance on the second training task and transfer tasks will be investigated. Two follow-up visits (at 1 and 7 months post-training) will be performed to assess possible maintenance effects. Structural and functional magnetic resonance imaging (MRI) will be applied before the intervention and at the 7-month follow-up to identify possible neural predictors for successful intervention. Significance With this trial, we aim to provide evidence for tDCS-induced improvements of multi-session cognitive training in participants with SCD and MCI. An improved understanding of tDCS effects on cognitive training performance and neural predictors may help to develop novel approaches to counteract cognitive decline in participants with prodromal AD. Trial registration ClinicalTrials.gov, NCT04265378. Registered on 07 February 2020. Retrospectively registered. Protocol version: Based on BB 004/18 version 1.2 (May 17, 2019). Sponsor: University Medicine Greifswald.


2021 ◽  
pp. 1-10
Author(s):  
Wei Xu ◽  
Chen-Chen Tan ◽  
Juan-Juan Zou ◽  
Xi-Peng Cao ◽  
Lan Tan ◽  
...  

Background: It is suggested that not all individuals with elevated Aβ will develop dementia or cognitive impairment. Environment or lifestyle might modulate the association of amyloid pathology with cognition. Insomnia is a risk factor of cognitive disorders including Alzheimer’s disease. Objective: To investigate if insomnia moderated the relationship between amyloid-β (Aβ) and longitudinal cognitive performance in non-demented elders. Methods: A total of 385 Alzheimer’s Disease Neuroimaging Initiative participants (mean age = 73 years, 48% females) who completed 4 + neuropsychological evaluations and a [18F] florbetapir positron emission tomography scan were followed up to 8 years. Linear mixed-effects regression models were used to examine the interactions effect between insomnia and Aβ on longitudinal cognitive sores, including four domains (memory [MEM], executive function [EF], language [LAN], and visuospatial function [VS]). Results: The Aβ-positive status (A+) but not insomnia independently predicted faster cognitive decline in all domains. Furthermore, the relationship between Aβ and cognitive decline was moderated by insomnia (MEM: χ 2 = 4.05, p = 0.044, EF: χ 2 = 4.38, p = 0.036, LAN: χ 2 = 4.56, p = 0.033, and VS: χ 2 = 4.12, p = 0.042). Individuals with both elevated Aβ and insomnia experienced faster cognitive decline than those with only elevated Aβ or insomnia. Conclusion: These data reinforced the values of insomnia management in preventing dementia, possibly by interacting Aβ metabolism. Future efforts are warranted to determine whether sleep improvement will postpone the onset of dementia, specifically among populations in stages of preclinical or prodromal AD.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Matthieu Bailly ◽  
Christophe Destrieux ◽  
Caroline Hommet ◽  
Karl Mondon ◽  
Jean-Philippe Cottier ◽  
...  

Objective.The objective of this study was to compare glucose metabolism and atrophy, in the precuneus and cingulate cortex, in patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI), using FreeSurfer.Methods.47 individuals (17 patients with AD, 17 patients with amnestic MCI, and 13 healthy controls (HC)) were included. MRI and PET images using18F-FDG (mean injected dose of 185 MBq) were acquired and analyzed using FreeSurfer to define regions of interest in the hippocampus, amygdala, precuneus, and anterior and posterior cingulate cortex. Regional volumes were generated. PET images were registered to the T1-weighted MRI images and regional uptake normalized by cerebellum uptake (SUVr) was measured.Results.Mean posterior cingulate volume was reduced in MCI and AD. SUVr were different between the three groups: mean precuneus SUVr was 1.02 for AD, 1.09 for MCI, and 1.26 for controls (p<0.05); mean posterior cingulate SUVr was 0.96, 1.06, and 1.22 for AD, MCI, and controls, respectively (p<0.05).Conclusion.We found graduated hypometabolism in the posterior cingulate cortex and the precuneus in prodromal AD (MCI) and AD, whereas atrophy was not significant. This suggests that the use of18F-FDG in these two regions could be a neurodegenerative biomarker.


2021 ◽  
Vol 13 ◽  
Author(s):  
Federica Cacciamani ◽  
Marion Houot ◽  
Geoffroy Gagliardi ◽  
Bruno Dubois ◽  
Sietske Sikkes ◽  
...  

Background: Identifying a poor degree of awareness of cognitive decline (ACD) could represent an early indicator of Alzheimer's disease (AD).Objectives: (1) to understand whether there is evidence of poor ACD in the pre-dementia stages of AD; (2) to summarize the main findings obtained investigating ACD in AD; (3) to propose a conceptual framework.Data Sources: We searched Scopus, Pubmed, and the reference lists for studies published up to August 2020. Original research articles must report a measure of ACD and included individuals with AD dementia, or prodromal AD (or MCI), or being at risk for AD.Data Synthesis: All studies covering preclinical, prodromal, and AD dementia were systematically reviewed. We intended to perform a meta-analysis of empirical studies on preclinical AD or prodromal AD (or MCI), to compare ACD between clinical groups. Due to the paucity of literature on preclinical AD, meta-analysis was only possible for prodromal AD (or MCI) studies.Results: We systematically reviewed 283 articles, and conducted a meta-analysis of 18 articles on prodromal AD (or MCI), showing that ACD was not significantly different between patients with amnestic and non-amnestic MCI (SMD = 0.09, p = 0.574); ACD was significantly poorer in amnestic MCI (SMD = −0.56, p = 0.001) and mild AD (SMD = −1.39, p &lt; 0.001) than in controls; ACD was also significantly poorer in mild AD than in amnestic MCI (SMD = −0.75, p &lt; 0.001), as well as poorer than in non-amnestic MCI (SMD = −1.00, p &lt; 0.001). We also discuss key findings on ACD in AD, such as its neural and cognitive correlates.Conclusions and Implications: We propose that patients may be complaining of their initial subtle cognitive changes, but ACD would soon start to decrease. The individual would show mild anosognosia in the MCI stage, and severe anosognosia in dementia. The evaluation of ACD (comparing self-report to cognitive scores or to informant-report) could be useful to guide the clinician toward a timely diagnosis, and in trials targeting early-stage AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaeho Kim ◽  
Yuhyun Park ◽  
Seongbeom Park ◽  
Hyemin Jang ◽  
Hee Jin Kim ◽  
...  

AbstractWe developed machine learning (ML) algorithms to predict abnormal tau accumulation among patients with prodromal AD. We recruited 64 patients with prodromal AD using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Supervised ML approaches based on the random forest (RF) and a gradient boosting machine (GBM) were used. The GBM resulted in an AUC of 0.61 (95% confidence interval [CI] 0.579–0.647) with clinical data (age, sex, years of education) and a higher AUC of 0.817 (95% CI 0.804–0.830) with clinical and neuropsychological data. The highest AUC was 0.86 (95% CI 0.839–0.885) achieved with additional information such as cortical thickness in clinical data and neuropsychological results. Through the analysis of the impact order of the variables in each ML classifier, cortical thickness of the parietal lobe and occipital lobe and neuropsychological tests of memory domain were found to be more important features for each classifier. Our ML algorithms predicting tau burden may provide important information for the recruitment of participants in potential clinical trials of tau targeting therapies.


Sign in / Sign up

Export Citation Format

Share Document