Insomnia Moderates the Relationship Between Amyloid-β and Cognitive Decline in Late-Life Adults without Dementia

2021 ◽  
pp. 1-10
Author(s):  
Wei Xu ◽  
Chen-Chen Tan ◽  
Juan-Juan Zou ◽  
Xi-Peng Cao ◽  
Lan Tan ◽  
...  

Background: It is suggested that not all individuals with elevated Aβ will develop dementia or cognitive impairment. Environment or lifestyle might modulate the association of amyloid pathology with cognition. Insomnia is a risk factor of cognitive disorders including Alzheimer’s disease. Objective: To investigate if insomnia moderated the relationship between amyloid-β (Aβ) and longitudinal cognitive performance in non-demented elders. Methods: A total of 385 Alzheimer’s Disease Neuroimaging Initiative participants (mean age = 73 years, 48% females) who completed 4 + neuropsychological evaluations and a [18F] florbetapir positron emission tomography scan were followed up to 8 years. Linear mixed-effects regression models were used to examine the interactions effect between insomnia and Aβ on longitudinal cognitive sores, including four domains (memory [MEM], executive function [EF], language [LAN], and visuospatial function [VS]). Results: The Aβ-positive status (A+) but not insomnia independently predicted faster cognitive decline in all domains. Furthermore, the relationship between Aβ and cognitive decline was moderated by insomnia (MEM: χ 2 = 4.05, p = 0.044, EF: χ 2 = 4.38, p = 0.036, LAN: χ 2 = 4.56, p = 0.033, and VS: χ 2 = 4.12, p = 0.042). Individuals with both elevated Aβ and insomnia experienced faster cognitive decline than those with only elevated Aβ or insomnia. Conclusion: These data reinforced the values of insomnia management in preventing dementia, possibly by interacting Aβ metabolism. Future efforts are warranted to determine whether sleep improvement will postpone the onset of dementia, specifically among populations in stages of preclinical or prodromal AD.

2020 ◽  
Vol 12 (534) ◽  
pp. eaaz4069 ◽  
Author(s):  
Kamalini G. Ranasinghe ◽  
Jungho Cha ◽  
Leonardo Iaccarino ◽  
Leighton B. Hinkley ◽  
Alexander J. Beagle ◽  
...  

Neural synchrony is intricately balanced in the normal resting brain but becomes altered in Alzheimer’s disease (AD). To determine the neurophysiological manifestations associated with molecular biomarkers of AD neuropathology, in patients with AD, we used magnetoencephalographic imaging (MEGI) and positron emission tomography with amyloid-beta (Aβ) and TAU tracers. We found that alpha oscillations (8 to 12 Hz) were hyposynchronous in occipital and posterior temporoparietal cortices, whereas delta-theta oscillations (2 to 8 Hz) were hypersynchronous in frontal and anterior temporoparietal cortices, in patients with AD compared to age-matched controls. Regional patterns of alpha hyposynchrony were unique in each neurobehavioral phenotype of AD, whereas the regional patterns of delta-theta hypersynchrony were similar across the phenotypes. Alpha hyposynchrony strongly colocalized with TAU deposition and was modulated by the degree of TAU tracer uptake. In contrast, delta-theta hypersynchrony colocalized with both TAU and Aβ depositions and was modulated by both TAU and Aβ tracer uptake. Furthermore, alpha hyposynchrony but not delta-theta hypersynchrony was correlated with the degree of global cognitive dysfunction in patients with AD. The current study demonstrates frequency-specific neurophysiological signatures of AD pathophysiology and suggests that neurophysiological measures from MEGI are sensitive indices of network disruptions mediated by TAU and Aβ and associated cognitive decline. These findings facilitate the pursuit of novel therapeutic approaches toward normalizing network synchrony in AD.


2020 ◽  
Vol 78 (3) ◽  
pp. 989-1010
Author(s):  
Gary E. Gibson ◽  
José A. Luchsinger ◽  
Rosanna Cirio ◽  
Huanlian Chen ◽  
Jessica Franchino-Elder ◽  
...  

Background: In preclinical models, benfotiamine efficiently ameliorates the clinical and biological pathologies that define Alzheimer’s disease (AD) including impaired cognition, amyloid-β plaques, neurofibrillary tangles, diminished glucose metabolism, oxidative stress, increased advanced glycation end products (AGE), and inflammation. Objective: To collect preliminary data on feasibility, safety, and efficacy in individuals with amnestic mild cognitive impairment (aMCI) or mild dementia due to AD in a placebo-controlled trial of benfotiamine. Methods: A twelve-month treatment with benfotiamine tested whether clinical decline would be delayed in the benfotiamine group compared to the placebo group. The primary clinical outcome was the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog). Secondary outcomes were the clinical dementia rating (CDR) score and fluorodeoxyglucose (FDG) uptake, measured with brain positron emission tomography (PET). Blood AGE were examined as an exploratory outcome. Results: Participants were treated with benfotiamine (34) or placebo (36). Benfotiamine treatment was safe. The increase in ADAS-Cog was 43% lower in the benfotiamine group than in the placebo group, indicating less cognitive decline, and this effect was nearly statistically significant (p = 0.125). Worsening in CDR was 77% lower (p = 0.034) in the benfotiamine group compared to the placebo group, and this effect was stronger in the APOE ɛ4 non-carriers. Benfotiamine significantly reduced increases in AGE (p = 0.044), and this effect was stronger in the APOE ɛ4 non-carriers. Exploratory analysis derivation of an FDG PET pattern score showed a treatment effect at one year (p = 0.002). Conclusion: Oral benfotiamine is safe and potentially efficacious in improving cognitive outcomes among persons with MCI and mild AD.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yu Guo ◽  
◽  
Yu-Yuan Huang ◽  
Xue-Ning Shen ◽  
Shi-Dong Chen ◽  
...  

Abstract Background We aimed to investigate the tau biomarker discrepancies of Alzheimer’s disease (AD) using plasma tau phosphorylated at threonine 181 (p-tau181), cerebrospinal fluid (CSF) p-tau181, and AV1451 positron emission tomography (PET). Methods In the Alzheimer’s Disease Neuroimaging Initiative, 724 non-demented participants were categorized into plasma/CSF and plasma/PET groups. Demographic and clinical variables, amyloid-β (Aβ) burden, flortaucipir-PET binding in Braak regions of interest (ROIs), longitudinal changes in clinical outcomes, and conversion risk were compared. Results Across different tau biomarker groups, the proportion of participants with a discordant profile varied (plasma+/CSF− 15.6%, plasma−/CSF+ 15.3%, plasma+/PET− 22.4%, and plasma−/PET+ 6.1%). Within the plasma/CSF categories, we found an increase from concordant-negative to discordant to concordant-positive in the frequency of Aβ pathology or cognitive impairment, rates of cognitive decline, and risk of cognitive conversion. However, the two discordant categories (plasma+/CSF− and plasma−/CSF+) showed comparable performances, resulting in similarly reduced cognitive capacities. Regarding plasma/PET categories, as expected, PET-positive individuals had increased Aβ burden, elevated flortaucipir retention in Braak ROIs, and accelerated cognitive deterioration than concordant-negative persons. Noteworthy, discordant participants with normal PET exhibited reduced flortaucipir uptake in Braak stage ROIs and slower rates of cognitive decline, relative to those PET-positive. Therefore, individuals with PET abnormality appeared to have advanced tau pathological changes and poorer cognitive function, regardless of the plasma status. Furthermore, these results were found only in individuals with Aβ pathology. Conclusions Our results indicate that plasma and CSF p-tau181 abnormalities associated with amyloidosis occur simultaneously in the progression of AD pathogenesis and related cognitive decline, before tau-PET turns positive.


2020 ◽  
Vol 19 (2) ◽  
pp. 85-93
Author(s):  
Win Ning Chen ◽  
Keng Yoon Yeong

Scopolamine as a drug is often used to treat motion sickness. Derivatives of scopolamine have also found applications as antispasmodic drugs among others. In neuroscience-related research, it is often used to induce cognitive disorders in experimental models as it readily permeates the bloodbrain barrier. In the context of Alzheimer’s disease, its effects include causing cholinergic dysfunction and increasing amyloid-β deposition, both of which are hallmarks of the disease. Hence, the application of scopolamine in Alzheimer’s disease research is proven pivotal but seldom discussed. In this review, the relationship between scopolamine and Alzheimer’s disease will be delineated through an overall effect of scopolamine administration and its specific mechanisms of action, discussing mainly its influences on cholinergic function and amyloid cascade. The validity of scopolamine as a model of cognitive impairment or neurotoxin model will also be discussed in terms of advantages and limitations with future insights.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tengfei Guo ◽  
Susan M. Landau ◽  
William J. Jagust ◽  

Abstract Background We recently reported that CSF phosphorylated tau (p-Tau181) relative to Aβ40 (CSF p-Tau/Aβ40 ratio) was less noisy and increased associations with Alzheimer’s disease (AD) biomarkers compared to CSF p-Tau181 alone. While elevations of CSF p-Tau/Aβ40 can occur in amyloid-β (Aβ) negative (Aβ-) individuals, the factors associated with these elevations and their role in neurodegeneration and cognitive decline are unknown. We aim to explore factors associated with elevated tau in CSF, and how these elevated tau are related to neurodegeneration and cognitive decline in the absence of Aβ positivity. Methods We examined relationships between CSF p-Tau/Aβ40, and CSF Aβ42/Aβ40, Aβ PET, and white matter hyperintensities (WMH) as well as vascular risk factors in 149 cognitively unimpaired and 52 impaired individuals who were presumably not on the Alzheimer’s disease (AD) pathway due to negative Aβ status on both CSF and PET. Subgroups had 18F-fluorodeoxyglucose (FDG) PET and adjusted hippocampal volume (aHCV), and longitudinal measures of CSF, aHCV, FDG PET, and cognition data, so we examined CSF p-Tau/Aβ40 associations with these measures as well. Results Elevated CSF p-Tau/Aβ40 was associated with older age, male sex, greater WMH, and hypertension as well as a pattern of hippocampal atrophy and temporoparietal hypometabolism characteristic of AD. Lower CSF Aβ42/Aβ40, higher WMH, and hypertension but not age, sex, Aβ PET, APOE-ε4 status, body mass index, smoking, and hyperlipidemia at baseline predicted CSF p-Tau/Aβ40 increases over approximately 5 years of follow-up. The relationship between CSF p-Tau/Aβ40 and subsequent cognitive decline was partially or fully explained by neurodegenerative measurements. Conclusions These data provide surprising clues as to the etiology and significance of tau pathology in the absence of Aβ. It seems likely that, in addition to age, both cerebrovascular disease and subthreshold levels of Aβ are related to this tau accumulation. Crucially, this phenotype of CSF tau elevation in amyloid-negative individuals share features with AD such as a pattern of metabolic decline and regional brain atrophy.


2018 ◽  
Vol 15 (4) ◽  
pp. 386-398 ◽  
Author(s):  
Fabricio Ferreira de Oliveira ◽  
Elizabeth Suchi Chen ◽  
Marilia Cardoso Smith ◽  
Paulo Henrique Ferreira Bertolucci

Background: While the angiotensin-converting enzyme degrades amyloid-β, angiotensinconverting enzyme inhibitors (ACEis) may slow cognitive decline by way of cholinergic effects, by increasing brain substance P and boosting the activity of neprilysin, and by modulating glucose homeostasis and augmenting the secretion of adipokines to enhance insulin sensitivity in patients with Alzheimer’s disease dementia (AD). We aimed to investigate whether ACE gene polymorphisms rs1800764 and rs4291 are associated with cognitive and functional change in patients with AD, while also taking APOE haplotypes and anti-hypertensive treatment with ACEis into account for stratification. Methods: Consecutive late-onset AD patients were screened with cognitive tests, while their caregivers were queried for functional and caregiver burden scores. Prospective pharmacogenetic correlations were estimated for one year, considering APOE and ACE genotypes and haplotypes, and treatment with ACEis. Results: For 193 patients, minor allele frequencies were 0.497 for rs1800764 – C (44.6% heterozygotes) and 0.345 for rs4291 – T (38.9% heterozygotes), both in Hardy-Weinberg equilibrium. Almost 94% of all patients used cholinesterase inhibitors, while 155 (80.3%) had arterial hypertension, and 124 used ACEis. No functional impacts were found regarding any genotypes or pharmacological treatment. Either for carriers of ACE haplotypes that included rs1800764 – T and rs4291 – A, or for APOE4- carriers of rs1800764 – T or rs4291 – T, ACEis slowed cognitive decline independently of blood pressure variations. APOE4+ carriers were not responsive to treatment with ACEis. Conclusion: ACEis may slow cognitive decline for patients with AD, more remarkably for APOE4- carriers of specific ACE genotypes.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 190
Author(s):  
Nikita Martens ◽  
Melissa Schepers ◽  
Na Zhan ◽  
Frank Leijten ◽  
Gardi Voortman ◽  
...  

We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXRβ-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-β (Aβ) deposition in an Alzheimer’s disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1ΔE9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1ΔE9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1ΔE9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, Aβ and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice without affecting the Aβ plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1ΔE9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice independent of effects on Aβ load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline.


2018 ◽  
Vol 29 (10) ◽  
pp. 4291-4302 ◽  
Author(s):  
Hang-Rai Kim ◽  
Peter Lee ◽  
Sang Won Seo ◽  
Jee Hoon Roh ◽  
Minyoung Oh ◽  
...  

Abstract Tau and amyloid β (Aβ), 2 key pathogenic proteins in Alzheimer’s disease (AD), reportedly spread throughout the brain as the disease progresses. Models of how these pathogenic proteins spread from affected to unaffected areas had been proposed based on the observation that these proteins could transmit to other regions either through neural fibers (transneuronal spread model) or through extracellular space (local spread model). In this study, we modeled the spread of tau and Aβ using a graph theoretical approach based on resting-state functional magnetic resonance imaging. We tested whether these models predict the distribution of tau and Aβ in the brains of AD spectrum patients. To assess the models’ performance, we calculated spatial correlation between the model-predicted map and the actual map from tau and amyloid positron emission tomography. The transneuronal spread model predicted the distribution of tau and Aβ deposition with significantly higher accuracy than the local spread model. Compared with tau, the local spread model also predicted a comparable portion of Aβ deposition. These findings provide evidence of transneuronal spread of AD pathogenic proteins in a large-scale brain network and furthermore suggest different contributions of spread models for tau and Aβ in AD.


Sign in / Sign up

Export Citation Format

Share Document