Relation Between Event-Related Potential Latency and Saccade Latency in Overt Shifts of Attention

Perception ◽  
2020 ◽  
Vol 49 (4) ◽  
pp. 468-483 ◽  
Author(s):  
Louisa Kulke ◽  
Janette Atkinson ◽  
Oliver Braddick

Controlled shifts of attention between competing stimuli are crucial for effective everyday visual behaviour. While these typically involve overt shifts of fixation, many past studies used covert attention shifts in which fixation is unchanged, meaning that some response components may result from the inhibition of eye movements. In this study, the neural events in the human brain when making overt shifts of attention are studied through the combination of event-related potential recording with simultaneous eye tracking. Fixation shifts under competition (central target remains visible when a peripheral target appears) were compared with noncompetition (central target disappears). A longer latency for competition compared with noncompetition, which is found in the saccadic response, is already present in the early occipital positivity when a single target is presented for the fixation shift. These results indicate that the requirement to disengage from a current target affects the time course of neural processing at an early level. However, the relation is more complex when the participant is required to choose which of two targets to fixate.

Neuroreport ◽  
2010 ◽  
Vol 21 (14) ◽  
pp. 948-952 ◽  
Author(s):  
Alina Leminen ◽  
Miika M. Leminen ◽  
Christina M. Krause

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoyu Tang ◽  
Xueli Wang ◽  
Xing Peng ◽  
Qi Li ◽  
Chi Zhang ◽  
...  

AbstractInhibition of return (IOR) refers to the slower response to targets appearing on the same side as the cue (valid locations) than to targets appearing on the opposite side as the cue (invalid locations). Previous behaviour studies have found that the visual IOR is larger than the audiovisual IOR when focusing on both visual and auditory modalities. Utilising the high temporal resolution of the event-related potential (ERP) technique we explored the possible neural correlates with the behaviour IOR difference between visual and audiovisual targets. The behavioural results revealed that the visual IOR was larger than the audiovisual IOR. The ERP results showed that the visual IOR effect was generated from the P1 and N2 components, while the audiovisual IOR effect was derived only from the P3 component. Multisensory integration (MSI) of audiovisual targets occurred on the P1, N1 and P3 components, which may offset the reduced perceptual processing due to audiovisual IOR. The results of early and late differences in the neural processing of the visual IOR and audiovisual IOR imply that the two target types may have different inhibitory orientation mechanisms.


2009 ◽  
Vol 102 (3) ◽  
pp. 1451-1458 ◽  
Author(s):  
Manon Mulckhuyse ◽  
Stefan Van der Stigchel ◽  
Jan Theeuwes

In this study, we investigated the time course of oculomotor competition between bottom-up and top-down selection processes using saccade trajectory deviations as a dependent measure. We used a paradigm in which we manipulated saccade latency by offsetting the fixation point at different time points relative to target onset. In experiment 1, observers made a saccade to a filled colored circle while another irrelevant distractor circle was presented. The distractor was either similar (i.e., identical) or dissimilar to the target. Results showed that the strength of saccade deviation was modulated by target distractor similarity for short saccade latencies. To rule out the possibility that the similar distractor affected the saccade trajectory merely because it was identical to the target, the distractor in experiment 2 was a square shape of which only the color was similar or dissimilar to the target. The results showed that deviations for both short and long latencies were modulated by target distractor similarity. When saccade latencies were short, we found less saccade deviation away from a similar than from a dissimilar distractor. When saccade latencies were long, the opposite pattern was found: more saccade deviation away from a similar than from a dissimilar distractor. In contrast to previous findings, our study shows that task-relevant information can already influence the early processes of oculomotor control. We conclude that competition between saccadic goals is subject to two different processes with different time courses: one fast activating process signaling the saliency and task relevance of a location and one slower inhibitory process suppressing that location.


1995 ◽  
Vol 73 (1) ◽  
pp. 160-171 ◽  
Author(s):  
F. Grolleau ◽  
B. Lapied

1. Whole cell voltage-clamp studies performed in isolated adult neurosecretory cells identified as dorsal unpaired median (DUM) neurons of the terminal abdominal ganglion of the cockroach Periplaneta americana have allowed us to reveal a complex voltage-dependent outward current regulating the pacemaker activity. 2. The global outward current remaining after tetrodotoxin treatment was activated by depolarization above -50 mV, showing steep voltage dependence and outward rectification. 3. We used tail current analysis to determine the ionic selectivity of this outward current. The reversal potentials for two extracellular potassium concentrations (-92.7 and -65.4 mV for 3.1 and 10 mM, respectively) is consistent with the expected equilibrium potential for potassium ions. 4. Both peak and sustained components of the global outward K+ current were reduced by external application of 20 mM tetraethylammonium chloride, 10 nM iberiotoxin, 1 nM charybdotoxin (CTX) and 1 mM cadmium chloride. Subtraction of current recorded in CTX solution from that in control solution revealed an unusual biphasic Ca(2+)-dependent K+ current. The fast transient current resistant to 5 mM 4-aminopyridine (4-AP) is distinguished by its dependence on holding potential and time course from the late sustained current. 5. In addition, two other components of CTX-resistant outward K+ current could be separated by sensitivity to 4-AP, time course, and voltage dependence. Beside a calcium-independent delayed outwardly rectifying current, a 4-AP-sensitive fast transient current resembling the A-current has been also identified. It activates at negative potential (about -65 mV) and unlike the A-current of other neurons, it inactivates rapidly with complex inactivation kinetics. A-like current is half-inactivated at -63.5 mV and half-activated at -35.6 mV. 6. Our findings demonstrate for the first time in DUM neuron cell bodies the existence of multiple potassium currents underlying the spontaneous electrical activity. Their identification and characterization represent a fundamental step in further understanding the pacemaker properties of these insect neurosecretory cells.


2020 ◽  
Vol 10 (6) ◽  
pp. 387 ◽  
Author(s):  
Yi-Kang Chiu ◽  
Chien-Yu Pan ◽  
Fu-Chen Chen ◽  
Yu-Ting Tseng ◽  
Chia-Liang Tsai

The effect of the predominant playing position of elite basketball players on executive functions using both behavioral and electrophysiological measurements was investigated in the present study. Forty-six elite basketball players, including 27 guards and 19 forwards, were recruited. Event-related potential (ERP) signals were simultaneously recorded when the athletes performed the visual Go/NoGo task. Analyses of the results revealed that the guards and forwards groups exhibited comparable behavioral (i.e., reaction time (RTs) and accuracy rates (ARs)) performance. With regards to the electrophysiological indices, the guards relative to the forwards exhibited a shorter N2 latency in the Go condition, a longer N2 latency in the NoGo condition, and a smaller P3 amplitude across the two conditions. These results suggested that although the guards and forwards exhibited similar abilities in terms of behavioral inhibition, different neural processing efficiencies still exist in the basketball playing positions, with guards showing divergent efficiencies in the target evaluation and response selection of the target and non-target stimuli and fewer cognitive resources during premotor preparation and decision-making as compared to the forwards.


2018 ◽  
Vol 7 (3.22) ◽  
pp. 21
Author(s):  
Tai Yan Shan ◽  
Faruque Reza ◽  
Tahamina Begum ◽  
Nasir Yusoff

Background: The other-race categorisation advantage (ORCA) is a well-established phenomenon, whereby other-race faces are categorised faster than own race faces. Objectives: This study investigated whether extraverts would demonstrate an ORCA-like effect toward unfamiliar other-race faces and familiar other-race faces in a modified oddball and choice reaction paradigm.  Methods: This event-related potential (ERP) study employed a repeated measures experimental design with one independent variable (racial familiarity) and three levels (familiar other-race/Malay faces, unfamiliar other-race/African faces, control group/furniture photos). In the oddball task, African faces and Malay faces were the target stimuli and furniture photos were the standard stimuli. Electroencephalography data (EEG) was collected during the oddball task, from which ERP components were derived. Results: The reaction time (RT) for African and Malay faces were not significantly different.  Significant effect of racial familiarity on P300 latencies at all electrode sites was not observed.  However, there was a significant effect of racial familiarity on P300 amplitudes at midline electrodes (Cz).  It was also observed that the P300 amplitude was larger for African faces than Malay faces at midline electrodes (Cz). Conclusion: An ORCA-like effect was not found in categorisation tasks involving faces from a familiar and an unfamiliar other-race, but a larger P300 amplitude was evoked by African faces. This dissociation between RT and P300 amplitude provided important theoretical implications with regard to models associated with ORCA. Specifically, the current findings lent support to the social cognition model and the Categorisation-Individuation Model (CIM).


Sign in / Sign up

Export Citation Format

Share Document