Sudden climate transitions during the Quaternary

1999 ◽  
Vol 23 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Jonathan Adams ◽  
Mark Maslin ◽  
Ellen Thomas

The time span of the past few million years has been punctuated by many rapid climate transitions, most of them on timescales of centuries to decades. The most detailed information is available for the Younger Dryas-to-Holocene stepwise change around 11 500 years ago, which seems to have occurred over a few decades. The speed of this change is probably representative of similar but less well studied climate transitions during the last few hundred thousand years. These include sudden cold events (Heinrich events/stadials), warm events (interstadials) and the beginning and ending of long warm phases, such as the Eemian interglacial. Detailed analysis of terrestrial and marine records of climate change will, however, be necessary before we can say confidently on what timescale these events occurred; they almost certainly did not take longer than a few centuries. Various mechanisms, involving changes in ocean circulation and biotic productivity, changes in atmospheric concentrations of greenhouse gases and haze particles, and changes in snow and ice cover, have been invoked to explain sudden regional and global transitions. We do not know whether such changes could occur in the near future as a result of human effects on climate. Phenomena such as the Younger Dryas and Heinrich events might only occur in a ‘glacial’ world with much larger ice sheets and more extensive sea-ice cover. A major sudden cold event, however, did probably occur under global climate conditions similar to those of the present, during the Eemian interglacial around 122 000 years ago. Less intensive, but significant rapid climate changes also occurred during the present (Holocene) interglacial, with cold and dry phases occurring on a 1500-year cycle, and with climate transitions on a decade-to-century timescale. In the past few centuries, smaller transitions (such as the ending of the Little Ice Age at about AD 1650) probably occurred over only a few decades at most. All evidence indicates that long-term climate change occurs in sudden jumps rather than incremental changes.

2013 ◽  
Vol 9 (3) ◽  
pp. 2277-2308
Author(s):  
R. de Jong ◽  
L. von Gunten ◽  
A. Maldonado ◽  
M. Grosjean

Abstract. High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr long austral summer (November to February) temperature reconstruction derived from the 210Pb and 14C dated organic sediments of Laguna Chepical (32°16' S/70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and Southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca AD 1400, long term temperature patterns were generally similar at low and high altitudes in central Chile.


2011 ◽  
Vol 75 (3) ◽  
pp. 541-551 ◽  
Author(s):  
John A. Rayburn ◽  
Thomas M. Cronin ◽  
David A. Franzi ◽  
Peter L.K. Knuepfer ◽  
Debra A. Willard

AbstractRadiocarbon-dated sediment cores from the Champlain Valley (northeastern USA) contain stratigraphic and micropaleontologic evidence for multiple, high-magnitude, freshwater discharges from North American proglacial lakes to the North Atlantic. Of particular interest are two large, closely spaced outflows that entered the North Atlantic Ocean via the St. Lawrence estuary about 13,200–12,900 cal yr BP, near the beginning of the Younger Dryas cold event. We estimate from varve chronology, sedimentation rates and proglacial lake volumes that the duration of the first outflow was less than 1 yr and its discharge was approximately 0.1 Sv (1 Sverdrup = 106 m3 s−1). The second outflow lasted about a century with a sustained discharge sufficient to keep the Champlain Sea relatively fresh for its duration. According to climate models, both outflows may have had sufficient discharge, duration and timing to affect meridional ocean circulation and climate. In this report we compare the proglacial lake discharge record in the Champlain and St. Lawrence valleys to paleoclimate records from Greenland Ice cores and Cariaco Basin and discuss the two-step nature of the inception of the Younger Dryas.


2001 ◽  
Vol 47 (159) ◽  
pp. 579-588 ◽  
Author(s):  
L. A. Rasmussen ◽  
H. Conway

AbstractA simple flux model using twice-daily measurements of wind, humidity and temperature from standard upper-air levels in a distant radiosonde estimated winter balance of South Cascade Glacier, Washington, U.S.A., over 1959–98 with error 0.24 m w.e. Correlation between net and winter balance is strong; the model estimates net balance with error 0.53 m w.e. Over the past 40 years, average net balance of South Cascade Glacier has been strongly negative (−0.46 m w.e.), and it has been shrinking steadily. In comparison, 200 km west-southwest at Blue Glacier, the average balance has been less negative (−0.13 m w.e); that glacier has undergone little change over the 40 years. Balance histories of the two glaciers are positively correlated (r = +0.54), and South Cascade has been more out of balance than Blue, presumably because it is still adjusting to climate change since the Little Ice Age. Recent warming and drying has made the net balance of both glaciers strongly negative since 1976 (−0.84 m w.e. at South Cascade, −0.56 m w.e. at Blue). If South Cascade Glacier were in balance with the 1986–98 climate, it would be about one-quarter of its present area.


2020 ◽  
Author(s):  
Jeemijn Scheen ◽  
Thomas F. Stocker

Abstract. Paleoreconstructions and modern observations provide us with anomalies of surface temperature over the past millennium. The history of deep ocean temperatures is much less well-known and was simulated in a recent study for the past 2000 years under forced surface temperature anomalies. In this study, we simulate the past 800 years with an illustrative forcing scenario in the Bern3D ocean model, which enables us to assess the role of changes in ocean circulation on deep ocean temperature. We quantify the effect of changing ocean circulation by comparing transient simulations (where the ocean dynamically adjusts to anomalies in surface temperature – hence density) to simulations with fixed ocean circulation. We decompose temperature, ocean heat content and meridional heat transport into the contributions from changing ocean circulation and changing sea surface temperature (SST). In the deep ocean, the contribution from changing ocean circulation is found to be as important as the changing SST signal itself. Firstly, the small changes in ocean circulation amplify the Little Ice Age signal around 3 km depth by at least a factor of two, depending on the basin. Secondly, they fasten the arrival of this atmospheric signal in the Pacific and Southern Ocean at all depths, whereas they delay the arrival in the Atlantic between about 2.5 and 3.5 km by two centuries. This delay is explained by an initial competition between the Little Ice Age cooling and a warming due to an increase in relatively warmer North Atlantic Deep Water at the cost of Antarctic Bottom Water. Under the consecutive AMOC slowdown, this shift in water masses is inverted and aging of the water causes a late additional cooling. Our results suggest that small changes in ocean circulation can have a large impact on the amplitude and timing of ocean temperature anomalies below 2 km depth.


2018 ◽  
Vol 14 (3) ◽  
pp. 383-396 ◽  
Author(s):  
Haipeng Wang ◽  
Jianhui Chen ◽  
Shengda Zhang ◽  
David D. Zhang ◽  
Zongli Wang ◽  
...  

Abstract. Long-term, high-resolution temperature records which combine an unambiguous proxy and precise dating are rare in China. In addition, the societal implications of past temperature change on a regional scale have not been sufficiently assessed. Here, based on the modern relationship between chironomids and temperature, we use fossil chironomid assemblages in a precisely dated sediment core from Gonghai Lake to explore temperature variability during the past 4000 years in northern China. Subsequently, we address the possible regional societal implications of temperature change through a statistical analysis of the occurrence of wars. Our results show the following. (1) The mean annual temperature (TANN) was relatively high during 4000–2700 cal yr BP, decreased gradually during 2700–1270 cal yr BP and then fluctuated during the last 1270 years. (2) A cold event in the Period of Disunity, the Sui-Tang Warm Period (STWP), the Medieval Warm Period (MWP) and the Little Ice Age (LIA) can all be recognized in the paleotemperature record, as well as in many other temperature reconstructions in China. This suggests that our chironomid-inferred temperature record for the Gonghai Lake region is representative. (3) Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature, and the relationship is a good example of the potential societal implications of temperature change on a regional scale.


2021 ◽  
Author(s):  
Sandra M. Braumann ◽  
Joerg M. Schaefer ◽  
Stephanie M. Neuhuber ◽  
Christopher Lüthgens ◽  
Alan J. Hidy ◽  
...  

Abstract. Glaciers preserve climate variations in their geological and geomorphological records, which makes them prime candidates for climate reconstructions. Investigating the glacier-climate system over the past millennia is particularly relevant because, first, the amplitude and frequency of natural climate variability during the Holocene provides the climatic context against which modern, human-induced climate change must be assessed. Second, the transition from the last glacial to the current interglacial promises important insights into the climate system during warming, which is of particular interest with respect to ongoing climate change. Evidence of stable ice margin positions that record cooling during the past 12 ka are preserved in two glaciated valleys of the Silvretta Massif in the Eastern European Alps, the Jamtal (JAM) and the Laraintal (LAR). We mapped and dated moraines in these catchments including historical ridges using Beryllium-10 Surface Exposure Dating (10Be SED) techniques, and correlate resulting moraine formation intervals with climate proxy records to evaluate the spatial and temporal scale of these cold phases. The new geochronologies indicate two moraine formation intervals (MFI) during the Early Holocene (EH): 10.8 ± 0.7 ka (n = 9) and 11.2 ± 0.8 ka (n = 12). Boulder ages along historical moraines (n = 6) imply at least two glacier advances during the Little Ice Age (LIA; c. 1250–1850 CE), around 1300 CE and in the second half of the 18th century. An earlier advance to the same position may have occurred around 500 CE. The Jamtal and Laraintal moraine chronologies provide evidence that millennial scale EH warming was superimposed by centennial scale cooling. The timing of EH moraine formation is contemporaneous with brief temperature drops identified in local and regional paleoproxy records, most prominently with the Preboreal Oscillation (PBO), and is consistent with moraine deposition in other catchments in the European Alps, and in the Arctic region. This consistency points to cooling beyond the local scale and therefore a regional or even hemispheric climate driver. Freshwater input sourced from the Laurentide Ice Sheet (LIS), which changed circulation patterns in the North Atlantic, is a plausible explanation for EH cooling and moraine formation in the Nordic region and in Europe.


2013 ◽  
Vol 9 (4) ◽  
pp. 1921-1932 ◽  
Author(s):  
R. de Jong ◽  
L. von Gunten ◽  
A. Maldonado ◽  
M. Grosjean

Abstract. High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr-long austral summer (November to February) temperature reconstruction derived from the 210Pb- and 14C-dated organic sediments of Laguna Chepical (32°16' S, 70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3 yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca. AD 1400, long-term temperature patterns were generally similar at low and high altitudes in central Chile.


Author(s):  
Kenneth Addison

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. The Quaternary period of Earth history, which commenced ca. 2.6 Ma ago, is noted for a series of dramatic shifts in global climate between long, cool (“icehouse”) and short, temperate (“greenhouse”) stages. This also coincides with the extinction of later Australopithecine hominins and evolution of modern Homo sapiens. Wide recognition of a fourth, Quaternary, order of geologic time emerged in Europe between ca. 1760–1830 and became closely identified with the concept of an ice age. This most recent episode in Earth history is also the best preserved in stratigraphic and landscape records. Indeed, much of its character and processes continue in present time, which prompted early geologists’ recognition of the concept of uniformitarianism—the present is the key to the past. Quaternary time was quickly divided into a dominant Pleistocene (“most recent”) epoch, characterized by cyclical growth and decay of major continental ice sheets and peripheral permafrost. Disappearance of most of these ice sheets, except in Antarctica and Greenland today, ushered in the Holocene (“wholly modern”) epoch, once thought to terminate the Ice Age but now seen as the current interglacial or temperate stage, commencing ca. 11.7 ka ago. Covering 30–50% of Earth’s land surface at their maxima, ice sheets and permafrost squeezed remaining biomes into a narrower circum-equatorial zone, where research indicated the former occurrence of pluvial and desiccation events. Early efforts to correlate them with mid-high latitude glacials and interglacials revealed the complex and often asynchronous Pleistocene record. Nineteenth-century recognition of just four glaciations reflected a reliance on geomorphology and short terrestrial stratigraphic records, concentrated in northern hemisphere mid- and high-latitudes, until the 1970s. Correlation of δ16-18 O isotope signals from seafloor sediments (from ocean drilling programs after the 1960s) with polar ice core signals from the 1980s onward has revolutionized our understanding of the Quaternary, facilitating a sophisticated, time-constrained record of events and environmental reconstructions from regional to global scales. Records from oceans and ice sheets, some spanning 105–106 years, are augmented by similar long records from loess, lake sediments, and speleothems (cave sediments). Their collective value is enhanced by innovative analytical and dating tools. Over 100 Marine Isotope Stages (MIS) are now recognized in the Quaternary, with dramatic climate shifts at decadal and centennial timescales—with the magnitude of 22 MIS in the past 900,000 years considered to reflect significant ice sheet accumulation and decay. Each cycle between temperate and cool conditions (odd- and even-numbered MIS respectively) is time-asymmetric, with progressive cooling over 80,000 to 100,000 years, followed by an abrupt termination then rapid return to temperate conditions for a few thousand years. The search for causes of Quaternary climate and environmental change embraces all strands of Earth System Science. Strong correlation between orbital forcing and major climate changes (summarized as the Milankovitch mechanism) is displacing earlier emphasis on radiative (direct solar) forcing, but uncertainty remains over how the orbital signal is amplified or modulated. Tectonic forcing (ocean-continent distributions, tectonic uplift, and volcanic outgassing), atmosphere-biogeochemical and greenhouse gas exchange, ocean-land surface albedo and deep- and surface-ocean circulation are all contenders and important agents in their own right. Modern understanding of Quaternary environments and processes feeds an exponential growth of multidisciplinary research, numerical modeling, and applications. Climate modeling exploits mutual benefits to science and society of “hindcasting,” using paleoclimate data to aid understanding of the past and increasing confidence in modeling forecasts. Pursuit of more detailed and sophisticated understanding of ocean-atmosphere-cryosphere-biosphere interaction proceeds apace. The Quaternary is also the stage on which human evolution plays. And the essential distinction between natural climate variability and human forcing is now recognized as designating, in present time, a potential new Anthropocene epoch. Quaternary past and present are major keys to its future.


Sign in / Sign up

Export Citation Format

Share Document