The evaluation of modified foot orthosis on muscle activity and kinetic in a subject with flexible flat foot : Single case study

2013 ◽  
Vol 38 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Hassan Saeedi ◽  
Mohammad E Mousavi ◽  
Basir Majddoleslam ◽  
Mehdi Rahgozar ◽  
Gholamreza Aminian ◽  
...  

Background:Due to blocking of pronation/dorsiflexion in flexible flat foot and restriction of these movements in using the University of California Berkeley Laboratory orthosis, provided pressures in sole by the orthosis were increased. Therefore, this article describes the evaluation of modified foot orthosis with flexible structure in the management of individuals with flexible flat foot.Case description and method:The patient was a 21-year-old male who had symptomatic flat foot. The modified foot orthosis included movable surface and the outside structure. The modified foot orthosis was evaluated by standing foot X-ray, comfort rate, electromyography of leg muscle and vertical ground reaction force during walking.Findings and outcomes:The modified foot orthosis improved the foot alignment and decreased the symptoms of flat foot with more comfort. Subtalar position by sub-maximum supination had higher position than neutral in sagittal plane. It may increase the muscle activity of peroneus longus by 7% compared to barefoot, and there was a decrease of 11% ground reaction force in mid stance.Conclusion:The result of this single case evaluation only proposed the feasibility of this modified insole as the orthotic treatment in flexible flat foot.Clinical relevanceThe modified foot orthosis, which is mobile in the midfoot, is an orthosis for walking and standing in subjects with flexible flat foot.

Author(s):  
Mizuki Kato ◽  
Arinori Kamono ◽  
Naomichi Ogihara

An ankle-foot orthosis is often prescribed in the rehabilitation of patients with neurological motor disorders such as hemiparesis. However, walking with a unilateral ankle-foot orthosis may not be effectively achieved just by trying to reproduce normal intact walking with a symmetrical gait pattern. Understanding skills to facilitate walking gait with a unilateral ankle-foot orthosis has implications for better rehabilitative interventions to help restore walking ability in patients with stroke. We, therefore, analyzed the kinematics and ground reaction forces of walking with and without an ankle-foot orthosis in healthy subjects to infer the possible skills to facilitate walking gait with a unilateral ankle-foot orthosis. Adult male participants were asked to walk with and without an ankle-foot orthosis across two force platforms set in a wooden walkway, and body kinematics and ground reaction force profiles in the sagittal plane were simultaneously recorded. We found that the forward tilting angle of the trunk at the time of toe-off of the leg with the ankle-foot orthosis was significantly larger than that of the leg without the ankle-foot orthosis, to adaptively compensate for the loss of ankle joint mobility due to the unilateral ankle-foot orthosis. Furthermore, the peak vertical ground reaction force at heel-contact was significantly larger in the leg without the ankle-foot orthosis than in the leg with the ankle-foot orthosis owing to the fact that the stance phase duration of the leg with the ankle-foot orthosis was relatively shorter. Such information may potentially be applied to facilitate walking training in stroke patients wearing a unilateral ankle-foot orthosis.


2005 ◽  
Vol 14 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Joseph M. Hart ◽  
Jamie L. Leonard ◽  
Christopher D. Ingersoll

Context:Despite recent findings regarding lower extremity function after cryotherapy, little is known of the neuromuscular, kinetic, and kinematic changes that might occur during functional tasks.Objective:To evaluate changes in ground-reaction forces, muscle activity, and knee-joint flexion during single-leg landings after 20-minute knee-joint cryotherapy.Design:1 × 4 repeated-measures, time-series design.Setting:Research laboratory.Patients or Other Participants:20 healthy male and female subjects.Intervention:Subjects performed 5 single-leg landings before, immediately after, and 15 and 30 minutes after knee-joint cryo-therapy.Main Outcome Measures:Ground-reaction force, knee-joint flexion, and muscle activity of the gastrocnemius, hamstrings, quadriceps, and gluteus medius.Results:Cryotherapy did not significantly (P> .05) change maximum knee-joint flexion, vertical ground-reaction force, or average muscle activity during a single-leg landing.Conclusion:Knee-joint cryotherapy might not place the lower extremity at risk for injury during landing.


2020 ◽  
pp. 1-9
Author(s):  
Louis Howe ◽  
Jamie S. North ◽  
Mark Waldron ◽  
Theodoros M. Bampouras

Context: Ankle dorsiflexion range of motion (DF ROM) has been associated with a number of kinematic and kinetic variables associated with landing performance that increase injury risk. However, whether exercise-induced fatigue exacerbates compensatory strategies has not yet been established. Objectives: (1) Explore differences in landing performance between individuals with restricted and normal ankle DF ROM and (2) identify the effect of fatigue on compensations in landing strategies for individuals with restricted and normal ankle DF ROM. Design: Cross-sectional. Setting: University research laboratory. Patients or Other Participants: Twelve recreational athletes with restricted ankle DF ROM (restricted group) and 12 recreational athletes with normal ankle DF ROM (normal group). Main Outcome Measure(s): The participants performed 5 bilateral drop-landings, before and following a fatiguing protocol. Normalized peak vertical ground reaction force, time to peak vertical ground reaction force, and loading rate were calculated, alongside sagittal plane initial contact angles, peak angles, and joint displacement for the ankle, knee, and hip. Frontal plane projection angles were also calculated. Results: At the baseline, the restricted group landed with significantly less knee flexion (P = .005, effect size [ES] = 1.27) at initial contact and reduced peak ankle dorsiflexion (P < .001, ES = 1.67), knee flexion (P < .001, ES = 2.18), and hip-flexion (P = .033, ES = 0.93) angles. Sagittal plane joint displacement was also significantly less for the restricted group for the ankle (P < .001, ES = 1.78), knee (P < .001, ES = 1.78), and hip (P = .028, ES = 0.96) joints. Conclusions: These findings suggest that individuals with restricted ankle DF ROM should adopt different landing strategies than those with normal ankle DF ROM. This is exacerbated when fatigued, although the functional consequences of fatigue on landing mechanics in individuals with ankle DF ROM restriction are unclear.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


1991 ◽  
Vol 71 (3) ◽  
pp. 1119-1122 ◽  
Author(s):  
R. Kram

People throughout Asia use springy bamboo poles to carry the loads of everyday life. These poles are a very compliant suspension system that allows the load to move along a nearly horizontal path while the person bounces up and down with each step. Could this be an economical way to carry loads inasmuch as no gravitational work has to be done to lift the load repeatedly? To find out, an experiment was conducted in which four male subjects ran at 3.0 m/s on a motorized treadmill with no load and while carrying a load equal to 19% body wt with compliant poles. Oxygen consumption rate, vertical ground reaction force, and the force exerted by the load on the shoulders were measured. Oxygen consumption rate increased by 22%. The same increase has previously been observed when loads are carried with a backpack. Thus compliant poles are not a particularly economical method of load carriage. However, pole suspension systems offer important advantages: they minimize peak shoulder forces and loading rates. In addition, the peak vertical ground reaction force is only slightly increased above unloaded levels when loads are carried with poles.


Sign in / Sign up

Export Citation Format

Share Document