Single-Leg Landing Strategy after Knee-Joint Cryotherapy

2005 ◽  
Vol 14 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Joseph M. Hart ◽  
Jamie L. Leonard ◽  
Christopher D. Ingersoll

Context:Despite recent findings regarding lower extremity function after cryotherapy, little is known of the neuromuscular, kinetic, and kinematic changes that might occur during functional tasks.Objective:To evaluate changes in ground-reaction forces, muscle activity, and knee-joint flexion during single-leg landings after 20-minute knee-joint cryotherapy.Design:1 × 4 repeated-measures, time-series design.Setting:Research laboratory.Patients or Other Participants:20 healthy male and female subjects.Intervention:Subjects performed 5 single-leg landings before, immediately after, and 15 and 30 minutes after knee-joint cryo-therapy.Main Outcome Measures:Ground-reaction force, knee-joint flexion, and muscle activity of the gastrocnemius, hamstrings, quadriceps, and gluteus medius.Results:Cryotherapy did not significantly (P> .05) change maximum knee-joint flexion, vertical ground-reaction force, or average muscle activity during a single-leg landing.Conclusion:Knee-joint cryotherapy might not place the lower extremity at risk for injury during landing.

2000 ◽  
Vol 9 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Stephen J. Kinzey ◽  
Mitchell L. Cordova ◽  
Kevin J. Gallen ◽  
Jason C. Smith ◽  
Justin B. Moore

Objective:To determine whether a standard 20-min ice-bath (10°C) immersion of the leg alters vertical ground-reaction-force components during a 1 -legged vertical jump.Design:A 1 × 5 factorial repeated-measures model was used.Setting:The Applied Biomechanics Laboratory at The University of Mississippi.Participants:Fifteen healthy and physically active subjects (age = 22.3 ± 2.1 years, height = 177.3 ± 12.2 cm, mass = 76.3 ± 19.1 kg) participated.Intervention:Subjects performed 25 one-legged vertical jumps with their preferred extremity before (5 jumps) and after (20 jumps) a 20-min cold whirlpool to the leg. The 25 jumps were reduced into 5 sets of average trials.Main Outcome Measures:Normalized peak and average vertical ground-reaction forces, as well as vertical impulse obtained using an instrumented force platform.Results:Immediately after cryotherapy (sets 2 and 3), vertical impulse decreased (P= .01); peak vertical ground-reaction force increased (set 2) but then decreased toward baseline measures (P= .02). Average vertical ground-reaction force remained unchanged (P>.05).Conclusions:The authors advocate waiting approximately 15 min before engaging in activities that require the production of weight-bearing explosive strength or power.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 930-931
Author(s):  
Taishi Tsuji ◽  
Tomohiro Okura ◽  
Kenji Tsunoda ◽  
Yasuhiro Mitsuishi ◽  
Naruki Kitano ◽  
...  

2013 ◽  
Vol 38 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Hassan Saeedi ◽  
Mohammad E Mousavi ◽  
Basir Majddoleslam ◽  
Mehdi Rahgozar ◽  
Gholamreza Aminian ◽  
...  

Background:Due to blocking of pronation/dorsiflexion in flexible flat foot and restriction of these movements in using the University of California Berkeley Laboratory orthosis, provided pressures in sole by the orthosis were increased. Therefore, this article describes the evaluation of modified foot orthosis with flexible structure in the management of individuals with flexible flat foot.Case description and method:The patient was a 21-year-old male who had symptomatic flat foot. The modified foot orthosis included movable surface and the outside structure. The modified foot orthosis was evaluated by standing foot X-ray, comfort rate, electromyography of leg muscle and vertical ground reaction force during walking.Findings and outcomes:The modified foot orthosis improved the foot alignment and decreased the symptoms of flat foot with more comfort. Subtalar position by sub-maximum supination had higher position than neutral in sagittal plane. It may increase the muscle activity of peroneus longus by 7% compared to barefoot, and there was a decrease of 11% ground reaction force in mid stance.Conclusion:The result of this single case evaluation only proposed the feasibility of this modified insole as the orthotic treatment in flexible flat foot.Clinical relevanceThe modified foot orthosis, which is mobile in the midfoot, is an orthosis for walking and standing in subjects with flexible flat foot.


2010 ◽  
Vol 19 (2) ◽  
pp. 136-148 ◽  
Author(s):  
Mitchell L. Cordova ◽  
Yosuke Takahashi ◽  
Gregory M. Kress ◽  
Jody B. Brucker ◽  
Alfred E. Finch

Objective:To investigate the effects of external ankle support (EAS) on lower extremity joint mechanics and vertical ground-reaction forces (VGRF) during drop landings.Design:A 1 × 3 repeated-measures, crossover design.Setting:Biomechanics research laboratory.Patients:13 male recreationally active basketball players (age 22.3 ± 2.2 y, height 177.5 ± 7.5 cm, mass 72.2 ± 11.4 kg) free from lower extremity pathology for the 12 mo before the study.Interventions:Subjects performed a 1-legged drop landing from a standardized height under 3 different ankle-support conditions.Main Outcome Measures:Hip, knee, and ankle angular displacement along with specific temporal (TGRFz1, TGRFz2; s) and spatial (GRFz1, GRFz2; body-weight units [BW]) characteristics of the VGRF vector were measured during a drop landing.Results:The tape condition (1.08 ± 0.09 BW) demonstrated less GRFz1 than the control (1.28 ± 0.16 BW) and semirigid conditions (1.28 ± 0.21 BW; P < .0001), and GRFz2 was unaffected. For TGRFz1, no-support displayed slower time (0.017 ± 0.004 s) than the semirigid (0.014 ± 0.001 s) and tape conditions (0.014 ± 0.002 s; P < .05). For TGRFz2, no-support displayed slower time (0.054 ±.006 s) than the semirigid (0.050 ± 0.006 s) and tape conditions (0.045 ± 0.004 s; P < .05). Semirigid bracing was slower than the tape condition, as well (P < .05). Ankle-joint displacement was less in the tape (34.6° ± 7.7°) and semirigid (36.8° ± 9.3°) conditions than in no-support (45.7° ± 7.3°; P < .05). Knee-joint displacement was larger in the no-support (45.1° ± 9.0°) than in the semirigid (42.6° ± 6.8°; P < .05) condition. Tape support (43.8° ± 8.7°) did not differ from the semirigid condition (P > .05). Hip angular displacement was not affected by EAS (F2,24 = 1.47, P = .25).Conclusions:EAS reduces ankle- and knee-joint displacement, which appear to influence the spatial and temporal characteristics of GRFz1 during drop landings.


2004 ◽  
Vol 13 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Matthew T. Crill ◽  
Christopher P. Kolba ◽  
Gary S. Chleboun

Context:The lunge is commonly used to assess lower extremity strength, flexibility, and balance, yet few objective data exist on it.Objectives:To determine the reliability of the lunge test, determine whether there are gender differences associated with it, and study the relationships between lunge distance and height and leg length.Design:Single-factor repeated measures.Setting:Laboratory.Participants:57: 29 men, 28 women.Main Outcome Measures:Anterior lunge (AL) and lateral lunge (LL) distance, height, and leg length (cm).Results:LL distance (131.3 ± 12.3) is significantly greater than AL distance (113.7 ± 17.2) in men and in women (LL 113.6 ± 10.5, AL 96.6 ± 11.1). There was no significant correlation for height or leg length to any lunge measurement in men or women.Conclusion:The lunge can be used as a reliable test to measure lower extremity function. Right- and left-leg lunge distances should not differ, and LL will always be greater than AL.


2013 ◽  
Vol 22 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Sahar Boozari ◽  
Ali Ashraf Jamshidi ◽  
Mohammad Ali Sanjari ◽  
Hassan Jafari

Context:Flat foot is one of the lower extremity deformities that might change kinetic variables of gait. Fatigue is one of the factors that can alter the vertical ground-reaction force (GRF). The effect of a fatiguing condition on vertical GRF has not been documented in individuals with flat feet.Objective:To examine the fatigue effect on vertical GRF in individuals with flat feet compared with a normal group during barefoot walking.Design:Repeated-measure ANOVA for the effects of fatigue on individuals with flat feet and normal feet.Setting:Biomechanics laboratory.Participants:17 subjects with flat feet and 17 normal subjects (recruited according to their arch-height ratio).Main Outcome Measures:Three vertical GRF measures (F1, the first peak force; F2, minimum force; and F3, the second peak force) were extracted before and after a functional fatigue protocol.Results:No significant interaction between fatigue and group was observed for the 3 vertical GRF measures. For F2, fatigue and group effects were significant (P = .001 and P = .02, respectively). Furthermore, F2 was higher in the flat-feet group than in the normal group; F2 also increased after fatigue. For F3, only a significant fatigue effect was observed (P = .004). F3 decreased after fatigue in both groups.Conclusions:In the flat-feet group, a decrease in the variation of vertical GRF might be due to more flexible foot joints. After fatigue, muscles might lose their ability to control the foot joints and cause higher F2 in the flat-feet group.


Sign in / Sign up

Export Citation Format

Share Document